mirror of
https://github.com/RAIRLab/Spectra.git
synced 2024-11-08 18:50:35 -05:00
129 lines
3.7 KiB
Text
129 lines
3.7 KiB
Text
;--------------------------------------------------------------------------
|
|
; File : RNG008-6 : TPTP v2.2.0. Released v1.0.0.
|
|
; Domain : Ring Theory
|
|
; Problem : Boolean rings are commutative
|
|
; Version : [MOW76] axioms : Augmented.
|
|
; English : Given a ring in which for all x, x * x = x, prove that for
|
|
; all x and y, x * y = y * x.
|
|
|
|
; Refs : [MOW76] McCharen et al. (1976), Problems and Experiments for a
|
|
; : [Ove90] Overbeek (1990), ATP competition announced at CADE-10
|
|
; : [Ove93] Overbeek (1993), The CADE-11 Competitions: A Personal
|
|
; : [LM93] Lusk & McCune (1993), Uniform Strategies: The CADE-11
|
|
; Source : [Ove90]
|
|
; Names : CADE-11 Competition 3 [Ove90]
|
|
; : THEOREM 3 [LM93]
|
|
|
|
; Status : unsatisfiable
|
|
; Rating : 0.67 v2.2.0, 0.71 v2.1.0, 0.75 v2.0.0
|
|
; Syntax : Number of clauses : 22 ( 0 non-Horn; 11 unit; 13 RR)
|
|
; Number of literals : 55 ( 2 equality)
|
|
; Maximal clause size : 5 ( 2 average)
|
|
; Number of predicates : 3 ( 0 propositional; 2-3 arity)
|
|
; Number of functors : 7 ( 4 constant; 0-2 arity)
|
|
; Number of variables : 74 ( 2 singleton)
|
|
; Maximal term depth : 2 ( 1 average)
|
|
|
|
; Comments : Supplies multiplication to identity as lemmas
|
|
; : tptp2X -f kif -t rm_equality:rstfp RNG008-6.p
|
|
;--------------------------------------------------------------------------
|
|
; additive_identity1, axiom.
|
|
(or (sum additive_identity ?A ?A))
|
|
|
|
; additive_identity2, axiom.
|
|
(or (sum ?A additive_identity ?A))
|
|
|
|
; closure_of_multiplication, axiom.
|
|
(or (product ?A ?B (multiply ?A ?B)))
|
|
|
|
; closure_of_addition, axiom.
|
|
(or (sum ?A ?B (add ?A ?B)))
|
|
|
|
; left_inverse, axiom.
|
|
(or (sum (additive_inverse ?A) ?A additive_identity))
|
|
|
|
; right_inverse, axiom.
|
|
(or (sum ?A (additive_inverse ?A) additive_identity))
|
|
|
|
; associativity_of_addition1, axiom.
|
|
(or (not (sum ?A ?B ?C))
|
|
(not (sum ?B ?D ?E))
|
|
(not (sum ?C ?D ?F))
|
|
(sum ?A ?E ?F))
|
|
|
|
; associativity_of_addition2, axiom.
|
|
(or (not (sum ?A ?B ?C))
|
|
(not (sum ?B ?D ?E))
|
|
(not (sum ?A ?E ?F))
|
|
(sum ?C ?D ?F))
|
|
|
|
; commutativity_of_addition, axiom.
|
|
(or (not (sum ?A ?B ?C))
|
|
(sum ?B ?A ?C))
|
|
|
|
; associativity_of_multiplication1, axiom.
|
|
(or (not (product ?A ?B ?C))
|
|
(not (product ?B ?D ?E))
|
|
(not (product ?C ?D ?F))
|
|
(product ?A ?E ?F))
|
|
|
|
; associativity_of_multiplication2, axiom.
|
|
(or (not (product ?A ?B ?C))
|
|
(not (product ?B ?D ?E))
|
|
(not (product ?A ?E ?F))
|
|
(product ?C ?D ?F))
|
|
|
|
; distributivity1, axiom.
|
|
(or (not (product ?A ?B ?C))
|
|
(not (product ?A ?D ?E))
|
|
(not (sum ?B ?D ?F))
|
|
(not (product ?A ?F ?G))
|
|
(sum ?C ?E ?G))
|
|
|
|
; distributivity2, axiom.
|
|
(or (not (product ?A ?B ?C))
|
|
(not (product ?A ?D ?E))
|
|
(not (sum ?B ?D ?F))
|
|
(not (sum ?C ?E ?G))
|
|
(product ?A ?F ?G))
|
|
|
|
; distributivity3, axiom.
|
|
(or (not (product ?A ?B ?C))
|
|
(not (product ?D ?B ?E))
|
|
(not (sum ?A ?D ?F))
|
|
(not (product ?F ?B ?G))
|
|
(sum ?C ?E ?G))
|
|
|
|
; distributivity4, axiom.
|
|
(or (not (product ?A ?B ?C))
|
|
(not (product ?D ?B ?E))
|
|
(not (sum ?A ?D ?F))
|
|
(not (sum ?C ?E ?G))
|
|
(product ?F ?B ?G))
|
|
|
|
; addition_is_well_defined, axiom.
|
|
(or (not (sum ?A ?B ?C))
|
|
(not (sum ?A ?B ?D))
|
|
(= ?C ?D))
|
|
|
|
; multiplication_is_well_defined, axiom.
|
|
(or (not (product ?A ?B ?C))
|
|
(not (product ?A ?B ?D))
|
|
(= ?C ?D))
|
|
|
|
; x_times_identity_x_is_identity, axiom.
|
|
(or (product ?A additive_identity additive_identity))
|
|
|
|
; identity_times_x_is_identity, axiom.
|
|
(or (product additive_identity ?A additive_identity))
|
|
|
|
; x_squared_is_x, hypothesis.
|
|
(or (product ?A ?A ?A))
|
|
|
|
; a_times_b_is_c, hypothesis.
|
|
(or (product a b c))
|
|
|
|
; prove_b_times_a_is_c, conjecture.
|
|
(or (not (product b a c)))
|
|
|
|
;--------------------------------------------------------------------------
|