Spectra/snark-20120808r02/examples/LCL109-2+rm_eq_rstfp.kif
Naveen Sundar Govindarajulu 8c78a2f8e5 First commits.
2017-01-14 22:08:51 -05:00

54 lines
2.4 KiB
Text

;--------------------------------------------------------------------------
; File : LCL109-2 : TPTP v2.2.0. Released v1.0.0.
; Domain : Logic Calculi (Many valued sentential)
; Problem : MV-4 depends on the Merideth system
; Version : [Ove90] axioms.
; Theorem formulation : Wajsberg algebra formulation.
; English : An axiomatisation of the many valued sentential calculus
; is {MV-1,MV-2,MV-3,MV-5} by Meredith. Wajsberg provided
; a different axiomatisation. Show that MV-4 depends on the
; Wajsberg system.
; Refs : [Ove90] Overbeek (1990), ATP competition announced at CADE-10
; : [LM92] Lusk & McCune (1992), Experiments with ROO, a Parallel
; : [LW92] Lusk & Wos (1992), Benchmark Problems in Which Equalit
; : [Ove93] Overbeek (1993), The CADE-11 Competitions: A Personal
; : [LM93] Lusk & McCune (1993), Uniform Strategies: The CADE-11
; : [Zha93] Zhang (1993), Automated Proofs of Equality Problems in
; Source : [Ove90]
; Names : CADE-11 Competition Eq-5 [Ove90]
; : Luka-5 [LM92]
; : MV4 [LW92]
; : THEOREM EQ-5 [LM93]
; : PROBLEM 5 [Zha93]
; Status : unsatisfiable
; Rating : 0.56 v2.2.0, 0.71 v2.1.0, 1.00 v2.0.0
; Syntax : Number of clauses : 5 ( 0 non-Horn; 5 unit; 1 RR)
; Number of literals : 5 ( 5 equality)
; Maximal clause size : 1 ( 1 average)
; Number of predicates : 1 ( 0 propositional; 2-2 arity)
; Number of functors : 5 ( 3 constant; 0-2 arity)
; Number of variables : 8 ( 0 singleton)
; Maximal term depth : 4 ( 2 average)
; Comments :
; : tptp2X -f kif -t rm_equality:rstfp LCL109-2.p
; ; 'true' renamed to 'true0' - MES
;--------------------------------------------------------------------------
; wajsberg_1, axiom.
(or (= (implies true0 ?A) ?A))
; wajsberg_2, axiom.
(or (= (implies (implies ?A ?B) (implies (implies ?B ?C) (implies ?A ?C))) true0))
; wajsberg_3, axiom.
(or (= (implies (implies ?A ?B) ?B) (implies (implies ?B ?A) ?A)))
; wajsberg_4, axiom.
(or (= (implies (implies (not ?A) (not ?B)) (implies ?B ?A)) true0))
; prove_wajsberg_mv_4, conjecture.
(or (/= (implies (implies (implies a b) (implies b a)) (implies b a)) true0))
;--------------------------------------------------------------------------