mirror of
https://github.com/RAIRLab/Spectra.git
synced 2024-11-13 21:07:30 -05:00
53 lines
2.2 KiB
Text
53 lines
2.2 KiB
Text
;--------------------------------------------------------------------------
|
|
; File : LCL114-1 : TPTP v2.2.0. Released v1.0.0.
|
|
; Domain : Logic Calculi (Many valued sentential)
|
|
; Problem : MV-36 depnds on the Merideth system
|
|
; Version : [McC92] axioms.
|
|
; English : An axiomatisation of the many valued sentential calculus
|
|
; is {MV-1,MV-2,MV-3,MV-5} by Meredith. Show that 36 depends
|
|
; on the Meredith system.
|
|
|
|
; Refs : [Ove90] Overbeek (1990), ATP competition announced at CADE-10
|
|
; : [MW92] McCune & Wos (1992), Experiments in Automated Deductio
|
|
; : [McC92] McCune (1992), Email to G. Sutcliffe
|
|
; : [Ove93] Overbeek (1993), The CADE-11 Competitions: A Personal
|
|
; : [LM93] Lusk & McCune (1993), Uniform Strategies: The CADE-11
|
|
; Source : [McC92]
|
|
; Names : CADE-11 Competition 7 [Ove90]
|
|
; : MV-60 [MW92]
|
|
; : THEOREM 7 [LM93]
|
|
|
|
; Status : unsatisfiable
|
|
; Rating : 0.89 v2.1.0, 0.88 v2.0.0
|
|
; Syntax : Number of clauses : 6 ( 0 non-Horn; 5 unit; 2 RR)
|
|
; Number of literals : 8 ( 0 equality)
|
|
; Maximal clause size : 3 ( 1 average)
|
|
; Number of predicates : 1 ( 0 propositional; 1-1 arity)
|
|
; Number of functors : 4 ( 2 constant; 0-2 arity)
|
|
; Number of variables : 11 ( 1 singleton)
|
|
; Maximal term depth : 4 ( 2 average)
|
|
|
|
; Comments :
|
|
; : tptp2X -f kif -t rm_equality:rstfp LCL114-1.p
|
|
;--------------------------------------------------------------------------
|
|
; condensed_detachment, axiom.
|
|
(or (not (is_a_theorem (implies ?A ?B)))
|
|
(not (is_a_theorem ?A))
|
|
(is_a_theorem ?B))
|
|
|
|
; mv_1, axiom.
|
|
(or (is_a_theorem (implies ?A (implies ?B ?A))))
|
|
|
|
; mv_2, axiom.
|
|
(or (is_a_theorem (implies (implies ?A ?B) (implies (implies ?B ?C) (implies ?A ?C)))))
|
|
|
|
; mv_3, axiom.
|
|
(or (is_a_theorem (implies (implies (implies ?A ?B) ?B) (implies (implies ?B ?A) ?A))))
|
|
|
|
; mv_5, axiom.
|
|
(or (is_a_theorem (implies (implies (not ?A) (not ?B)) (implies ?B ?A))))
|
|
|
|
; prove_mv_36, conjecture.
|
|
(or (not (is_a_theorem (implies (implies a b) (implies (not b) (not a))))))
|
|
|
|
;--------------------------------------------------------------------------
|