mirror of
https://github.com/RAIRLab/Spectra.git
synced 2024-11-21 16:36:29 -05:00
55 lines
2.3 KiB
Text
55 lines
2.3 KiB
Text
%------------------------------------------------------------------------------
|
|
% File : LCL111-1 : TPTP v3.0.0. Released v1.0.0.
|
|
% Domain : Logic Calculi (Many valued sentential)
|
|
% Problem : MV-25 depends on the Merideth system
|
|
% Version : [McC92] axioms.
|
|
% English : An axiomatisation of the many valued sentential calculus
|
|
% is {MV-1,MV-2,MV-3,MV-5} by Meredith. Show that MV-25 depends
|
|
% on the Meredith system.
|
|
|
|
% Refs : [Ove90] Overbeek (1990), ATP competition announced at CADE-10
|
|
% : [MW92] McCune & Wos (1992), Experiments in Automated Deductio
|
|
% : [McC92] McCune (1992), Email to G. Sutcliffe
|
|
% : [Ove93] Overbeek (1993), The CADE-11 Competitions: A Personal
|
|
% : [LM93] Lusk & McCune (1993), Uniform Strategies: The CADE-11
|
|
% Source : [McC92]
|
|
% Names : CADE-11 Competition 6 [Ove90]
|
|
% : MV-57 [MW92]
|
|
% : THEOREM 6 [LM93]
|
|
% : mv.in part 2 [OTTER]
|
|
% : mv25.in [OTTER]
|
|
% : ovb6 [SETHEO]
|
|
|
|
% Status : Unsatisfiable
|
|
% Rating : 0.00 v2.4.0, 0.43 v2.3.0, 0.14 v2.2.1, 0.11 v2.2.0, 0.22 v2.1.0, 0.25 v2.0.0
|
|
% Syntax : Number of clauses : 6 ( 0 non-Horn; 5 unit; 2 RR)
|
|
% Number of atoms : 8 ( 0 equality)
|
|
% Maximal clause size : 3 ( 1 average)
|
|
% Number of predicates : 1 ( 0 propositional; 1-1 arity)
|
|
% Number of functors : 5 ( 3 constant; 0-2 arity)
|
|
% Number of variables : 11 ( 1 singleton)
|
|
% Maximal term depth : 4 ( 3 average)
|
|
|
|
% Comments :
|
|
% : tptp2X -f tptp:short LCL111-1.p
|
|
%------------------------------------------------------------------------------
|
|
cnf(condensed_detachment,axiom,(
|
|
~ is_a_theorem(implies(X,Y))
|
|
| ~ is_a_theorem(X)
|
|
| is_a_theorem(Y) )).
|
|
|
|
cnf(mv_1,axiom,(
|
|
is_a_theorem(implies(X,implies(Y,X))) )).
|
|
|
|
cnf(mv_2,axiom,(
|
|
is_a_theorem(implies(implies(X,Y),implies(implies(Y,Z),implies(X,Z)))) )).
|
|
|
|
cnf(mv_3,axiom,(
|
|
is_a_theorem(implies(implies(implies(X,Y),Y),implies(implies(Y,X),X))) )).
|
|
|
|
cnf(mv_5,axiom,(
|
|
is_a_theorem(implies(implies(not(X),not(Y)),implies(Y,X))) )).
|
|
|
|
cnf(prove_mv_25,negated_conjecture,(
|
|
~ is_a_theorem(implies(implies(a,b),implies(implies(c,a),implies(c,b)))) )).
|
|
%------------------------------------------------------------------------------
|