mirror of
https://github.com/RAIRLab/Spectra.git
synced 2024-11-23 17:36:31 -05:00
Moved snark to submodule
This commit is contained in:
parent
0b01117377
commit
4f1f9c0b83
239 changed files with 6 additions and 36288 deletions
3
.gitmodules
vendored
Normal file
3
.gitmodules
vendored
Normal file
|
@ -0,0 +1,3 @@
|
||||||
|
[submodule "snark"]
|
||||||
|
path = snark
|
||||||
|
url = https://github.com/RAIRLab/snark
|
|
@ -1,6 +1,6 @@
|
||||||
FROM maven:3.6.3-jdk-11
|
FROM maven:3.6.3-jdk-11
|
||||||
ADD ./target/server-jar-with-dependencies.jar ./
|
ADD ./target/server-jar-with-dependencies.jar ./
|
||||||
RUN mkdir -p ./snark-20120808r02
|
RUN mkdir -p ./snark
|
||||||
COPY ./snark-20120808r02/ ./snark-20120808r02
|
COPY ./snark/ ./snark2
|
||||||
EXPOSE 25333 25334
|
EXPOSE 25333 25334
|
||||||
CMD java -jar server-jar-with-dependencies.jar
|
CMD java -jar server-jar-with-dependencies.jar
|
1
snark
Submodule
1
snark
Submodule
|
@ -0,0 +1 @@
|
||||||
|
Subproject commit 1b657eadf4e87f3ba46e030c3e549854b2454a4e
|
|
@ -1,53 +0,0 @@
|
||||||
SNARK is run regularly in
|
|
||||||
Macintosh Common Lisp on Mac OS X
|
|
||||||
Steel Bank Common Lisp (SBCL) on Mac OS X
|
|
||||||
Clozure Common Lisp (CCL nee OpenMCL) on Mac OS X
|
|
||||||
and has been run in other ANSI Common Lisp systems
|
|
||||||
|
|
||||||
After editing for the correct name and location of the SBCL Lisp system in the appropriate make-xxx file
|
|
||||||
a 32-bit executable of SNARK in SBCL named snark can be made by ./make-snark-sbcl;
|
|
||||||
a 64-bit executable of SNARK in SBCL named snark64 can be make by ./make-snark-sbcl64.
|
|
||||||
|
|
||||||
After editing for the correct name and location of the CCL Lisp system in the appropriate make-xxx file
|
|
||||||
a 32-bit executable of SNARK in CCL named snark-ccl can be made by ./make-snark-ccl;
|
|
||||||
a 64-bit executable of SNARK in CCL named snark-ccl64 can be maded by ./make-snark-ccl64
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
Older detailed instructions:
|
|
||||||
|
|
||||||
(replace "yyyymmdd" by the SNARK version date)
|
|
||||||
|
|
||||||
Installing SNARK:
|
|
||||||
|
|
||||||
tar xfz snark-yyyymmdd.tar.gz
|
|
||||||
cd snark-yyyymmdd
|
|
||||||
lisp
|
|
||||||
(load "snark-system.lisp")
|
|
||||||
(make-snark-system t) ;t specifies compilation
|
|
||||||
(make-snark-system t) ;compile again for more inlining (optional)
|
|
||||||
;can use :optimize instead of t to compile for
|
|
||||||
;higher speed at the expense of less error checking
|
|
||||||
(quit)
|
|
||||||
|
|
||||||
Running SNARK:
|
|
||||||
|
|
||||||
lisp
|
|
||||||
(load "snark-system.lisp")
|
|
||||||
(make-snark-system) ;loads SNARK files compiled above
|
|
||||||
:
|
|
||||||
|
|
||||||
The lengthy load process in running SNARK can be eliminated
|
|
||||||
for CCL, SBCL, CMUCL, Allegro Common Lisp, or CLISP by doing
|
|
||||||
lisp
|
|
||||||
(load "snark-system.lisp")
|
|
||||||
(make-snark-system)
|
|
||||||
(save-snark-system)
|
|
||||||
after installing SNARK as above.
|
|
||||||
(save-snark-system) will print instructions for running
|
|
||||||
the resulting Lisp core image with SNARK preloaded.
|
|
||||||
|
|
||||||
In the case of SBCL, (save-snark-system) can be replaced by
|
|
||||||
(save-snark-system :name "snark" :executable t)
|
|
||||||
to create a standalone SNARK executable. This is done
|
|
||||||
by the make-snark-sbcl and make-snark-sbcl64 scripts.
|
|
|
@ -1,453 +0,0 @@
|
||||||
MOZILLA PUBLIC LICENSE
|
|
||||||
Version 1.1
|
|
||||||
|
|
||||||
---------------
|
|
||||||
|
|
||||||
1. Definitions.
|
|
||||||
|
|
||||||
1.0.1. "Commercial Use" means distribution or otherwise making the
|
|
||||||
Covered Code available to a third party.
|
|
||||||
|
|
||||||
1.1. "Contributor" means each entity that creates or contributes to
|
|
||||||
the creation of Modifications.
|
|
||||||
|
|
||||||
1.2. "Contributor Version" means the combination of the Original
|
|
||||||
Code, prior Modifications used by a Contributor, and the Modifications
|
|
||||||
made by that particular Contributor.
|
|
||||||
|
|
||||||
1.3. "Covered Code" means the Original Code or Modifications or the
|
|
||||||
combination of the Original Code and Modifications, in each case
|
|
||||||
including portions thereof.
|
|
||||||
|
|
||||||
1.4. "Electronic Distribution Mechanism" means a mechanism generally
|
|
||||||
accepted in the software development community for the electronic
|
|
||||||
transfer of data.
|
|
||||||
|
|
||||||
1.5. "Executable" means Covered Code in any form other than Source
|
|
||||||
Code.
|
|
||||||
|
|
||||||
1.6. "Initial Developer" means the individual or entity identified
|
|
||||||
as the Initial Developer in the Source Code notice required by Exhibit
|
|
||||||
A.
|
|
||||||
|
|
||||||
1.7. "Larger Work" means a work which combines Covered Code or
|
|
||||||
portions thereof with code not governed by the terms of this License.
|
|
||||||
|
|
||||||
1.8. "License" means this document.
|
|
||||||
|
|
||||||
1.8.1. "Licensable" means having the right to grant, to the maximum
|
|
||||||
extent possible, whether at the time of the initial grant or
|
|
||||||
subsequently acquired, any and all of the rights conveyed herein.
|
|
||||||
|
|
||||||
1.9. "Modifications" means any addition to or deletion from the
|
|
||||||
substance or structure of either the Original Code or any previous
|
|
||||||
Modifications. When Covered Code is released as a series of files, a
|
|
||||||
Modification is:
|
|
||||||
A. Any addition to or deletion from the contents of a file
|
|
||||||
containing Original Code or previous Modifications.
|
|
||||||
|
|
||||||
B. Any new file that contains any part of the Original Code or
|
|
||||||
previous Modifications.
|
|
||||||
|
|
||||||
1.10. "Original Code" means Source Code of computer software code
|
|
||||||
which is described in the Source Code notice required by Exhibit A as
|
|
||||||
Original Code, and which, at the time of its release under this
|
|
||||||
License is not already Covered Code governed by this License.
|
|
||||||
|
|
||||||
1.10.1. "Patent Claims" means any patent claim(s), now owned or
|
|
||||||
hereafter acquired, including without limitation, method, process,
|
|
||||||
and apparatus claims, in any patent Licensable by grantor.
|
|
||||||
|
|
||||||
1.11. "Source Code" means the preferred form of the Covered Code for
|
|
||||||
making modifications to it, including all modules it contains, plus
|
|
||||||
any associated interface definition files, scripts used to control
|
|
||||||
compilation and installation of an Executable, or source code
|
|
||||||
differential comparisons against either the Original Code or another
|
|
||||||
well known, available Covered Code of the Contributor's choice. The
|
|
||||||
Source Code can be in a compressed or archival form, provided the
|
|
||||||
appropriate decompression or de-archiving software is widely available
|
|
||||||
for no charge.
|
|
||||||
|
|
||||||
1.12. "You" (or "Your") means an individual or a legal entity
|
|
||||||
exercising rights under, and complying with all of the terms of, this
|
|
||||||
License or a future version of this License issued under Section 6.1.
|
|
||||||
For legal entities, "You" includes any entity which controls, is
|
|
||||||
controlled by, or is under common control with You. For purposes of
|
|
||||||
this definition, "control" means (a) the power, direct or indirect,
|
|
||||||
to cause the direction or management of such entity, whether by
|
|
||||||
contract or otherwise, or (b) ownership of more than fifty percent
|
|
||||||
(50%) of the outstanding shares or beneficial ownership of such
|
|
||||||
entity.
|
|
||||||
|
|
||||||
2. Source Code License.
|
|
||||||
|
|
||||||
2.1. The Initial Developer Grant.
|
|
||||||
The Initial Developer hereby grants You a world-wide, royalty-free,
|
|
||||||
non-exclusive license, subject to third party intellectual property
|
|
||||||
claims:
|
|
||||||
(a) under intellectual property rights (other than patent or
|
|
||||||
trademark) Licensable by Initial Developer to use, reproduce,
|
|
||||||
modify, display, perform, sublicense and distribute the Original
|
|
||||||
Code (or portions thereof) with or without Modifications, and/or
|
|
||||||
as part of a Larger Work; and
|
|
||||||
|
|
||||||
(b) under Patents Claims infringed by the making, using or
|
|
||||||
selling of Original Code, to make, have made, use, practice,
|
|
||||||
sell, and offer for sale, and/or otherwise dispose of the
|
|
||||||
Original Code (or portions thereof).
|
|
||||||
|
|
||||||
(c) the licenses granted in this Section 2.1(a) and (b) are
|
|
||||||
effective on the date Initial Developer first distributes
|
|
||||||
Original Code under the terms of this License.
|
|
||||||
|
|
||||||
(d) Notwithstanding Section 2.1(b) above, no patent license is
|
|
||||||
granted: 1) for code that You delete from the Original Code; 2)
|
|
||||||
separate from the Original Code; or 3) for infringements caused
|
|
||||||
by: i) the modification of the Original Code or ii) the
|
|
||||||
combination of the Original Code with other software or devices.
|
|
||||||
|
|
||||||
2.2. Contributor Grant.
|
|
||||||
Subject to third party intellectual property claims, each Contributor
|
|
||||||
hereby grants You a world-wide, royalty-free, non-exclusive license
|
|
||||||
|
|
||||||
(a) under intellectual property rights (other than patent or
|
|
||||||
trademark) Licensable by Contributor, to use, reproduce, modify,
|
|
||||||
display, perform, sublicense and distribute the Modifications
|
|
||||||
created by such Contributor (or portions thereof) either on an
|
|
||||||
unmodified basis, with other Modifications, as Covered Code
|
|
||||||
and/or as part of a Larger Work; and
|
|
||||||
|
|
||||||
(b) under Patent Claims infringed by the making, using, or
|
|
||||||
selling of Modifications made by that Contributor either alone
|
|
||||||
and/or in combination with its Contributor Version (or portions
|
|
||||||
of such combination), to make, use, sell, offer for sale, have
|
|
||||||
made, and/or otherwise dispose of: 1) Modifications made by that
|
|
||||||
Contributor (or portions thereof); and 2) the combination of
|
|
||||||
Modifications made by that Contributor with its Contributor
|
|
||||||
Version (or portions of such combination).
|
|
||||||
|
|
||||||
(c) the licenses granted in Sections 2.2(a) and 2.2(b) are
|
|
||||||
effective on the date Contributor first makes Commercial Use of
|
|
||||||
the Covered Code.
|
|
||||||
|
|
||||||
(d) Notwithstanding Section 2.2(b) above, no patent license is
|
|
||||||
granted: 1) for any code that Contributor has deleted from the
|
|
||||||
Contributor Version; 2) separate from the Contributor Version;
|
|
||||||
3) for infringements caused by: i) third party modifications of
|
|
||||||
Contributor Version or ii) the combination of Modifications made
|
|
||||||
by that Contributor with other software (except as part of the
|
|
||||||
Contributor Version) or other devices; or 4) under Patent Claims
|
|
||||||
infringed by Covered Code in the absence of Modifications made by
|
|
||||||
that Contributor.
|
|
||||||
|
|
||||||
3. Distribution Obligations.
|
|
||||||
|
|
||||||
3.1. Application of License.
|
|
||||||
The Modifications which You create or to which You contribute are
|
|
||||||
governed by the terms of this License, including without limitation
|
|
||||||
Section 2.2. The Source Code version of Covered Code may be
|
|
||||||
distributed only under the terms of this License or a future version
|
|
||||||
of this License released under Section 6.1, and You must include a
|
|
||||||
copy of this License with every copy of the Source Code You
|
|
||||||
distribute. You may not offer or impose any terms on any Source Code
|
|
||||||
version that alters or restricts the applicable version of this
|
|
||||||
License or the recipients' rights hereunder. However, You may include
|
|
||||||
an additional document offering the additional rights described in
|
|
||||||
Section 3.5.
|
|
||||||
|
|
||||||
3.2. Availability of Source Code.
|
|
||||||
Any Modification which You create or to which You contribute must be
|
|
||||||
made available in Source Code form under the terms of this License
|
|
||||||
either on the same media as an Executable version or via an accepted
|
|
||||||
Electronic Distribution Mechanism to anyone to whom you made an
|
|
||||||
Executable version available; and if made available via Electronic
|
|
||||||
Distribution Mechanism, must remain available for at least twelve (12)
|
|
||||||
months after the date it initially became available, or at least six
|
|
||||||
(6) months after a subsequent version of that particular Modification
|
|
||||||
has been made available to such recipients. You are responsible for
|
|
||||||
ensuring that the Source Code version remains available even if the
|
|
||||||
Electronic Distribution Mechanism is maintained by a third party.
|
|
||||||
|
|
||||||
3.3. Description of Modifications.
|
|
||||||
You must cause all Covered Code to which You contribute to contain a
|
|
||||||
file documenting the changes You made to create that Covered Code and
|
|
||||||
the date of any change. You must include a prominent statement that
|
|
||||||
the Modification is derived, directly or indirectly, from Original
|
|
||||||
Code provided by the Initial Developer and including the name of the
|
|
||||||
Initial Developer in (a) the Source Code, and (b) in any notice in an
|
|
||||||
Executable version or related documentation in which You describe the
|
|
||||||
origin or ownership of the Covered Code.
|
|
||||||
|
|
||||||
3.4. Intellectual Property Matters
|
|
||||||
(a) Third Party Claims.
|
|
||||||
If Contributor has knowledge that a license under a third party's
|
|
||||||
intellectual property rights is required to exercise the rights
|
|
||||||
granted by such Contributor under Sections 2.1 or 2.2,
|
|
||||||
Contributor must include a text file with the Source Code
|
|
||||||
distribution titled "LEGAL" which describes the claim and the
|
|
||||||
party making the claim in sufficient detail that a recipient will
|
|
||||||
know whom to contact. If Contributor obtains such knowledge after
|
|
||||||
the Modification is made available as described in Section 3.2,
|
|
||||||
Contributor shall promptly modify the LEGAL file in all copies
|
|
||||||
Contributor makes available thereafter and shall take other steps
|
|
||||||
(such as notifying appropriate mailing lists or newsgroups)
|
|
||||||
reasonably calculated to inform those who received the Covered
|
|
||||||
Code that new knowledge has been obtained.
|
|
||||||
|
|
||||||
(b) Contributor APIs.
|
|
||||||
If Contributor's Modifications include an application programming
|
|
||||||
interface and Contributor has knowledge of patent licenses which
|
|
||||||
are reasonably necessary to implement that API, Contributor must
|
|
||||||
also include this information in the LEGAL file.
|
|
||||||
|
|
||||||
(c) Representations.
|
|
||||||
Contributor represents that, except as disclosed pursuant to
|
|
||||||
Section 3.4(a) above, Contributor believes that Contributor's
|
|
||||||
Modifications are Contributor's original creation(s) and/or
|
|
||||||
Contributor has sufficient rights to grant the rights conveyed by
|
|
||||||
this License.
|
|
||||||
|
|
||||||
3.5. Required Notices.
|
|
||||||
You must duplicate the notice in Exhibit A in each file of the Source
|
|
||||||
Code. If it is not possible to put such notice in a particular Source
|
|
||||||
Code file due to its structure, then You must include such notice in a
|
|
||||||
location (such as a relevant directory) where a user would be likely
|
|
||||||
to look for such a notice. If You created one or more Modification(s)
|
|
||||||
You may add your name as a Contributor to the notice described in
|
|
||||||
Exhibit A. You must also duplicate this License in any documentation
|
|
||||||
for the Source Code where You describe recipients' rights or ownership
|
|
||||||
rights relating to Covered Code. You may choose to offer, and to
|
|
||||||
charge a fee for, warranty, support, indemnity or liability
|
|
||||||
obligations to one or more recipients of Covered Code. However, You
|
|
||||||
may do so only on Your own behalf, and not on behalf of the Initial
|
|
||||||
Developer or any Contributor. You must make it absolutely clear than
|
|
||||||
any such warranty, support, indemnity or liability obligation is
|
|
||||||
offered by You alone, and You hereby agree to indemnify the Initial
|
|
||||||
Developer and every Contributor for any liability incurred by the
|
|
||||||
Initial Developer or such Contributor as a result of warranty,
|
|
||||||
support, indemnity or liability terms You offer.
|
|
||||||
|
|
||||||
3.6. Distribution of Executable Versions.
|
|
||||||
You may distribute Covered Code in Executable form only if the
|
|
||||||
requirements of Section 3.1-3.5 have been met for that Covered Code,
|
|
||||||
and if You include a notice stating that the Source Code version of
|
|
||||||
the Covered Code is available under the terms of this License,
|
|
||||||
including a description of how and where You have fulfilled the
|
|
||||||
obligations of Section 3.2. The notice must be conspicuously included
|
|
||||||
in any notice in an Executable version, related documentation or
|
|
||||||
collateral in which You describe recipients' rights relating to the
|
|
||||||
Covered Code. You may distribute the Executable version of Covered
|
|
||||||
Code or ownership rights under a license of Your choice, which may
|
|
||||||
contain terms different from this License, provided that You are in
|
|
||||||
compliance with the terms of this License and that the license for the
|
|
||||||
Executable version does not attempt to limit or alter the recipient's
|
|
||||||
rights in the Source Code version from the rights set forth in this
|
|
||||||
License. If You distribute the Executable version under a different
|
|
||||||
license You must make it absolutely clear that any terms which differ
|
|
||||||
from this License are offered by You alone, not by the Initial
|
|
||||||
Developer or any Contributor. You hereby agree to indemnify the
|
|
||||||
Initial Developer and every Contributor for any liability incurred by
|
|
||||||
the Initial Developer or such Contributor as a result of any such
|
|
||||||
terms You offer.
|
|
||||||
|
|
||||||
3.7. Larger Works.
|
|
||||||
You may create a Larger Work by combining Covered Code with other code
|
|
||||||
not governed by the terms of this License and distribute the Larger
|
|
||||||
Work as a single product. In such a case, You must make sure the
|
|
||||||
requirements of this License are fulfilled for the Covered Code.
|
|
||||||
|
|
||||||
4. Inability to Comply Due to Statute or Regulation.
|
|
||||||
|
|
||||||
If it is impossible for You to comply with any of the terms of this
|
|
||||||
License with respect to some or all of the Covered Code due to
|
|
||||||
statute, judicial order, or regulation then You must: (a) comply with
|
|
||||||
the terms of this License to the maximum extent possible; and (b)
|
|
||||||
describe the limitations and the code they affect. Such description
|
|
||||||
must be included in the LEGAL file described in Section 3.4 and must
|
|
||||||
be included with all distributions of the Source Code. Except to the
|
|
||||||
extent prohibited by statute or regulation, such description must be
|
|
||||||
sufficiently detailed for a recipient of ordinary skill to be able to
|
|
||||||
understand it.
|
|
||||||
|
|
||||||
5. Application of this License.
|
|
||||||
|
|
||||||
This License applies to code to which the Initial Developer has
|
|
||||||
attached the notice in Exhibit A and to related Covered Code.
|
|
||||||
|
|
||||||
6. Versions of the License.
|
|
||||||
|
|
||||||
6.1. New Versions.
|
|
||||||
Netscape Communications Corporation ("Netscape") may publish revised
|
|
||||||
and/or new versions of the License from time to time. Each version
|
|
||||||
will be given a distinguishing version number.
|
|
||||||
|
|
||||||
6.2. Effect of New Versions.
|
|
||||||
Once Covered Code has been published under a particular version of the
|
|
||||||
License, You may always continue to use it under the terms of that
|
|
||||||
version. You may also choose to use such Covered Code under the terms
|
|
||||||
of any subsequent version of the License published by Netscape. No one
|
|
||||||
other than Netscape has the right to modify the terms applicable to
|
|
||||||
Covered Code created under this License.
|
|
||||||
|
|
||||||
6.3. Derivative Works.
|
|
||||||
If You create or use a modified version of this License (which you may
|
|
||||||
only do in order to apply it to code which is not already Covered Code
|
|
||||||
governed by this License), You must (a) rename Your license so that
|
|
||||||
the phrases "Mozilla", "MOZILLAPL", "MOZPL", "Netscape",
|
|
||||||
"MPL", "NPL" or any confusingly similar phrase do not appear in your
|
|
||||||
license (except to note that your license differs from this License)
|
|
||||||
and (b) otherwise make it clear that Your version of the license
|
|
||||||
contains terms which differ from the Mozilla Public License and
|
|
||||||
Netscape Public License. (Filling in the name of the Initial
|
|
||||||
Developer, Original Code or Contributor in the notice described in
|
|
||||||
Exhibit A shall not of themselves be deemed to be modifications of
|
|
||||||
this License.)
|
|
||||||
|
|
||||||
7. DISCLAIMER OF WARRANTY.
|
|
||||||
|
|
||||||
COVERED CODE IS PROVIDED UNDER THIS LICENSE ON AN "AS IS" BASIS,
|
|
||||||
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING,
|
|
||||||
WITHOUT LIMITATION, WARRANTIES THAT THE COVERED CODE IS FREE OF
|
|
||||||
DEFECTS, MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE OR NON-INFRINGING.
|
|
||||||
THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE COVERED CODE
|
|
||||||
IS WITH YOU. SHOULD ANY COVERED CODE PROVE DEFECTIVE IN ANY RESPECT,
|
|
||||||
YOU (NOT THE INITIAL DEVELOPER OR ANY OTHER CONTRIBUTOR) ASSUME THE
|
|
||||||
COST OF ANY NECESSARY SERVICING, REPAIR OR CORRECTION. THIS DISCLAIMER
|
|
||||||
OF WARRANTY CONSTITUTES AN ESSENTIAL PART OF THIS LICENSE. NO USE OF
|
|
||||||
ANY COVERED CODE IS AUTHORIZED HEREUNDER EXCEPT UNDER THIS DISCLAIMER.
|
|
||||||
|
|
||||||
8. TERMINATION.
|
|
||||||
|
|
||||||
8.1. This License and the rights granted hereunder will terminate
|
|
||||||
automatically if You fail to comply with terms herein and fail to cure
|
|
||||||
such breach within 30 days of becoming aware of the breach. All
|
|
||||||
sublicenses to the Covered Code which are properly granted shall
|
|
||||||
survive any termination of this License. Provisions which, by their
|
|
||||||
nature, must remain in effect beyond the termination of this License
|
|
||||||
shall survive.
|
|
||||||
|
|
||||||
8.2. If You initiate litigation by asserting a patent infringement
|
|
||||||
claim (excluding declatory judgment actions) against Initial Developer
|
|
||||||
or a Contributor (the Initial Developer or Contributor against whom
|
|
||||||
You file such action is referred to as "Participant") alleging that:
|
|
||||||
|
|
||||||
(a) such Participant's Contributor Version directly or indirectly
|
|
||||||
infringes any patent, then any and all rights granted by such
|
|
||||||
Participant to You under Sections 2.1 and/or 2.2 of this License
|
|
||||||
shall, upon 60 days notice from Participant terminate prospectively,
|
|
||||||
unless if within 60 days after receipt of notice You either: (i)
|
|
||||||
agree in writing to pay Participant a mutually agreeable reasonable
|
|
||||||
royalty for Your past and future use of Modifications made by such
|
|
||||||
Participant, or (ii) withdraw Your litigation claim with respect to
|
|
||||||
the Contributor Version against such Participant. If within 60 days
|
|
||||||
of notice, a reasonable royalty and payment arrangement are not
|
|
||||||
mutually agreed upon in writing by the parties or the litigation claim
|
|
||||||
is not withdrawn, the rights granted by Participant to You under
|
|
||||||
Sections 2.1 and/or 2.2 automatically terminate at the expiration of
|
|
||||||
the 60 day notice period specified above.
|
|
||||||
|
|
||||||
(b) any software, hardware, or device, other than such Participant's
|
|
||||||
Contributor Version, directly or indirectly infringes any patent, then
|
|
||||||
any rights granted to You by such Participant under Sections 2.1(b)
|
|
||||||
and 2.2(b) are revoked effective as of the date You first made, used,
|
|
||||||
sold, distributed, or had made, Modifications made by that
|
|
||||||
Participant.
|
|
||||||
|
|
||||||
8.3. If You assert a patent infringement claim against Participant
|
|
||||||
alleging that such Participant's Contributor Version directly or
|
|
||||||
indirectly infringes any patent where such claim is resolved (such as
|
|
||||||
by license or settlement) prior to the initiation of patent
|
|
||||||
infringement litigation, then the reasonable value of the licenses
|
|
||||||
granted by such Participant under Sections 2.1 or 2.2 shall be taken
|
|
||||||
into account in determining the amount or value of any payment or
|
|
||||||
license.
|
|
||||||
|
|
||||||
8.4. In the event of termination under Sections 8.1 or 8.2 above,
|
|
||||||
all end user license agreements (excluding distributors and resellers)
|
|
||||||
which have been validly granted by You or any distributor hereunder
|
|
||||||
prior to termination shall survive termination.
|
|
||||||
|
|
||||||
9. LIMITATION OF LIABILITY.
|
|
||||||
|
|
||||||
UNDER NO CIRCUMSTANCES AND UNDER NO LEGAL THEORY, WHETHER TORT
|
|
||||||
(INCLUDING NEGLIGENCE), CONTRACT, OR OTHERWISE, SHALL YOU, THE INITIAL
|
|
||||||
DEVELOPER, ANY OTHER CONTRIBUTOR, OR ANY DISTRIBUTOR OF COVERED CODE,
|
|
||||||
OR ANY SUPPLIER OF ANY OF SUCH PARTIES, BE LIABLE TO ANY PERSON FOR
|
|
||||||
ANY INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES OF ANY
|
|
||||||
CHARACTER INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF GOODWILL,
|
|
||||||
WORK STOPPAGE, COMPUTER FAILURE OR MALFUNCTION, OR ANY AND ALL OTHER
|
|
||||||
COMMERCIAL DAMAGES OR LOSSES, EVEN IF SUCH PARTY SHALL HAVE BEEN
|
|
||||||
INFORMED OF THE POSSIBILITY OF SUCH DAMAGES. THIS LIMITATION OF
|
|
||||||
LIABILITY SHALL NOT APPLY TO LIABILITY FOR DEATH OR PERSONAL INJURY
|
|
||||||
RESULTING FROM SUCH PARTY'S NEGLIGENCE TO THE EXTENT APPLICABLE LAW
|
|
||||||
PROHIBITS SUCH LIMITATION. SOME JURISDICTIONS DO NOT ALLOW THE
|
|
||||||
EXCLUSION OR LIMITATION OF INCIDENTAL OR CONSEQUENTIAL DAMAGES, SO
|
|
||||||
THIS EXCLUSION AND LIMITATION MAY NOT APPLY TO YOU.
|
|
||||||
|
|
||||||
10. U.S. GOVERNMENT END USERS.
|
|
||||||
|
|
||||||
The Covered Code is a "commercial item," as that term is defined in
|
|
||||||
48 C.F.R. 2.101 (Oct. 1995), consisting of "commercial computer
|
|
||||||
software" and "commercial computer software documentation," as such
|
|
||||||
terms are used in 48 C.F.R. 12.212 (Sept. 1995). Consistent with 48
|
|
||||||
C.F.R. 12.212 and 48 C.F.R. 227.7202-1 through 227.7202-4 (June 1995),
|
|
||||||
all U.S. Government End Users acquire Covered Code with only those
|
|
||||||
rights set forth herein.
|
|
||||||
|
|
||||||
11. MISCELLANEOUS.
|
|
||||||
|
|
||||||
This License represents the complete agreement concerning subject
|
|
||||||
matter hereof. If any provision of this License is held to be
|
|
||||||
unenforceable, such provision shall be reformed only to the extent
|
|
||||||
necessary to make it enforceable. This License shall be governed by
|
|
||||||
California law provisions (except to the extent applicable law, if
|
|
||||||
any, provides otherwise), excluding its conflict-of-law provisions.
|
|
||||||
With respect to disputes in which at least one party is a citizen of,
|
|
||||||
or an entity chartered or registered to do business in the United
|
|
||||||
States of America, any litigation relating to this License shall be
|
|
||||||
subject to the jurisdiction of the Federal Courts of the Northern
|
|
||||||
District of California, with venue lying in Santa Clara County,
|
|
||||||
California, with the losing party responsible for costs, including
|
|
||||||
without limitation, court costs and reasonable attorneys' fees and
|
|
||||||
expenses. The application of the United Nations Convention on
|
|
||||||
Contracts for the International Sale of Goods is expressly excluded.
|
|
||||||
Any law or regulation which provides that the language of a contract
|
|
||||||
shall be construed against the drafter shall not apply to this
|
|
||||||
License.
|
|
||||||
|
|
||||||
12. RESPONSIBILITY FOR CLAIMS.
|
|
||||||
|
|
||||||
As between Initial Developer and the Contributors, each party is
|
|
||||||
responsible for claims and damages arising, directly or indirectly,
|
|
||||||
out of its utilization of rights under this License and You agree to
|
|
||||||
work with Initial Developer and Contributors to distribute such
|
|
||||||
responsibility on an equitable basis. Nothing herein is intended or
|
|
||||||
shall be deemed to constitute any admission of liability.
|
|
||||||
|
|
||||||
13. MULTIPLE-LICENSED CODE.
|
|
||||||
|
|
||||||
Initial Developer may designate portions of the Covered Code as
|
|
||||||
"Multiple-Licensed". "Multiple-Licensed" means that the Initial
|
|
||||||
Developer permits you to utilize portions of the Covered Code under
|
|
||||||
Your choice of the NPL or the alternative licenses, if any, specified
|
|
||||||
by the Initial Developer in the file described in Exhibit A.
|
|
||||||
|
|
||||||
EXHIBIT A -Mozilla Public License.
|
|
||||||
|
|
||||||
``The contents of this file are subject to the Mozilla Public License
|
|
||||||
Version 1.1 (the "License"); you may not use this file except in
|
|
||||||
compliance with the License. You may obtain a copy of the License at
|
|
||||||
http://www.mozilla.org/MPL/
|
|
||||||
|
|
||||||
Software distributed under the License is distributed on an "AS IS"
|
|
||||||
basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the
|
|
||||||
License for the specific language governing rights and limitations
|
|
||||||
under the License.
|
|
||||||
|
|
||||||
The Original Code is SNARK.
|
|
||||||
|
|
||||||
The Initial Developer of the Original Code is SRI International.
|
|
||||||
Portions created by the Initial Developer are Copyright (C) 1981-2011.
|
|
||||||
All Rights Reserved.
|
|
||||||
|
|
||||||
Contributor(s): Mark E. Stickel <stickel@ai.sri.com>.
|
|
|
@ -1,36 +0,0 @@
|
||||||
(replace "yyyymmdd" by the SNARK version date)
|
|
||||||
|
|
||||||
Obtaining SNARK:
|
|
||||||
|
|
||||||
SNARK can be downloaded from the SNARK web page
|
|
||||||
http://www.ai.sri.com/~stickel/snark.html
|
|
||||||
|
|
||||||
See INSTALL file for installation instructions
|
|
||||||
|
|
||||||
Running SNARK:
|
|
||||||
|
|
||||||
lisp
|
|
||||||
(load "snark-system.lisp")
|
|
||||||
(make-snark-system)
|
|
||||||
:
|
|
||||||
|
|
||||||
Examples:
|
|
||||||
|
|
||||||
(overbeek-test) in overbeek-test.lisp
|
|
||||||
some standard theorem-proving examples, some time-consuming
|
|
||||||
|
|
||||||
(steamroller-example) in steamroller-example.lisp
|
|
||||||
illustrates sorts
|
|
||||||
|
|
||||||
(front-last-example) in front-last-example.lisp
|
|
||||||
illustrates program synthesis
|
|
||||||
|
|
||||||
(reverse-example) in reverse-example.lisp
|
|
||||||
illustrates logic programming style usage
|
|
||||||
|
|
||||||
A guide to SNARK has been written:
|
|
||||||
|
|
||||||
http://www.ai.sri.com/snark/tutorial/tutorial.html
|
|
||||||
|
|
||||||
but has not been updated yet to reflect changes in SNARK,
|
|
||||||
especially for temporal and spatial reasoning.
|
|
|
@ -1,4 +0,0 @@
|
||||||
(load "snark-system.lisp")
|
|
||||||
(make-snark-system t)
|
|
||||||
(make-snark-system :optimize)
|
|
||||||
(quit)
|
|
|
@ -1,47 +0,0 @@
|
||||||
;--------------------------------------------------------------------------
|
|
||||||
; File : BOO002-1 : TPTP v2.2.0. Released v1.0.0.
|
|
||||||
; Domain : Boolean Algebra (Ternary)
|
|
||||||
; Problem : In B3 algebra, X * X^-1 * Y = Y
|
|
||||||
; Version : [OTTER] (equality) axioms : Reduced > Incomplete.
|
|
||||||
; English :
|
|
||||||
|
|
||||||
; Refs : [LO85] Lusk & Overbeek (1985), Reasoning about Equality
|
|
||||||
; : [Ove90] Overbeek (1990), ATP competition announced at CADE-10
|
|
||||||
; : [Ove93] Overbeek (1993), The CADE-11 Competitions: A Personal
|
|
||||||
; : [LM93] Lusk & McCune (1993), Uniform Strategies: The CADE-11
|
|
||||||
; : [Zha93] Zhang (1993), Automated Proofs of Equality Problems in
|
|
||||||
; Source : [Ove90]
|
|
||||||
; Names : Problem 5 [LO85]
|
|
||||||
; : CADE-11 Competition Eq-3 [Ove90]
|
|
||||||
; : THEOREM EQ-3 [LM93]
|
|
||||||
; : PROBLEM 3 [Zha93]
|
|
||||||
|
|
||||||
; Status : unsatisfiable
|
|
||||||
; Rating : 0.33 v2.2.0, 0.43 v2.1.0, 0.38 v2.0.0
|
|
||||||
; Syntax : Number of clauses : 5 ( 0 non-Horn; 5 unit; 1 RR)
|
|
||||||
; Number of literals : 5 ( 5 equality)
|
|
||||||
; Maximal clause size : 1 ( 1 average)
|
|
||||||
; Number of predicates : 1 ( 0 propositional; 2-2 arity)
|
|
||||||
; Number of functors : 4 ( 2 constant; 0-3 arity)
|
|
||||||
; Number of variables : 11 ( 2 singleton)
|
|
||||||
; Maximal term depth : 3 ( 2 average)
|
|
||||||
|
|
||||||
; Comments :
|
|
||||||
; : tptp2X -f kif -t rm_equality:rstfp BOO002-1.p
|
|
||||||
;--------------------------------------------------------------------------
|
|
||||||
; associativity, axiom.
|
|
||||||
(or (= (multiply (multiply ?A ?B ?C) ?D (multiply ?A ?B ?E)) (multiply ?A ?B (multiply ?C ?D ?E))))
|
|
||||||
|
|
||||||
; ternary_multiply_1, axiom.
|
|
||||||
(or (= (multiply ?A ?B ?B) ?B))
|
|
||||||
|
|
||||||
; ternary_multiply_2, axiom.
|
|
||||||
(or (= (multiply ?A ?A ?B) ?A))
|
|
||||||
|
|
||||||
; left_inverse, axiom.
|
|
||||||
(or (= (multiply (inverse ?A) ?A ?B) ?B))
|
|
||||||
|
|
||||||
; prove_equation, conjecture.
|
|
||||||
(or (/= (multiply a (inverse a) b) b))
|
|
||||||
|
|
||||||
;--------------------------------------------------------------------------
|
|
|
@ -1,53 +0,0 @@
|
||||||
;--------------------------------------------------------------------------
|
|
||||||
; File : COL003-1 : TPTP v2.2.0. Released v1.0.0.
|
|
||||||
; Domain : Combinatory Logic
|
|
||||||
; Problem : Strong fixed point for B and W
|
|
||||||
; Version : [WM88] (equality) axioms.
|
|
||||||
; English : The strong fixed point property holds for the set
|
|
||||||
; P consisting of the combinators B and W alone, where ((Bx)y)z
|
|
||||||
; = x(yz) and (Wx)y = (xy)y.
|
|
||||||
|
|
||||||
; Refs : [Smu85] Smullyan (1978), To Mock a Mocking Bird and Other Logi
|
|
||||||
; : [MW87] McCune & Wos (1987), A Case Study in Automated Theorem
|
|
||||||
; : [WM88] Wos & McCune (1988), Challenge Problems Focusing on Eq
|
|
||||||
; : [Wos88] Wos (1988), Automated Reasoning - 33 Basic Research Pr
|
|
||||||
; : [Ove90] Overbeek (1990), ATP competition announced at CADE-10
|
|
||||||
; : [LW92] Lusk & Wos (1992), Benchmark Problems in Which Equalit
|
|
||||||
; : [Wos93] Wos (1993), The Kernel Strategy and Its Use for the St
|
|
||||||
; : [Ove93] Overbeek (1993), The CADE-11 Competitions: A Personal
|
|
||||||
; : [LM93] Lusk & McCune (1993), Uniform Strategies: The CADE-11
|
|
||||||
; : [Zha93] Zhang (1993), Automated Proofs of Equality Problems in
|
|
||||||
; Source : [WM88]
|
|
||||||
; Names : C2 [WM88]
|
|
||||||
; : Test Problem 17 [Wos88]
|
|
||||||
; : Sages and Combinatory Logic [Wos88]
|
|
||||||
; : CADE-11 Competition Eq-8 [Ove90]
|
|
||||||
; : CL2 [LW92]
|
|
||||||
; : THEOREM EQ-8 [LM93]
|
|
||||||
; : Question 3 [Wos93]
|
|
||||||
; : Question 5 [Wos93]
|
|
||||||
; : PROBLEM 8 [Zha93]
|
|
||||||
|
|
||||||
; Status : unknown
|
|
||||||
; Rating : 1.00 v2.0.0
|
|
||||||
; Syntax : Number of clauses : 3 ( 0 non-Horn; 3 unit; 1 RR)
|
|
||||||
; Number of literals : 3 ( 3 equality)
|
|
||||||
; Maximal clause size : 1 ( 1 average)
|
|
||||||
; Number of predicates : 1 ( 0 propositional; 2-2 arity)
|
|
||||||
; Number of functors : 4 ( 2 constant; 0-2 arity)
|
|
||||||
; Number of variables : 6 ( 0 singleton)
|
|
||||||
; Maximal term depth : 4 ( 3 average)
|
|
||||||
|
|
||||||
; Comments :
|
|
||||||
; : tptp2X -f kif -t rm_equality:rstfp COL003-1.p
|
|
||||||
;--------------------------------------------------------------------------
|
|
||||||
; b_definition, axiom.
|
|
||||||
(or (= (apply (apply (apply b ?A) ?B) ?C) (apply ?A (apply ?B ?C))))
|
|
||||||
|
|
||||||
; w_definition, axiom.
|
|
||||||
(or (= (apply (apply w ?A) ?B) (apply (apply ?A ?B) ?B)))
|
|
||||||
|
|
||||||
; prove_strong_fixed_point, conjecture.
|
|
||||||
(or (/= (apply ?A (f ?A)) (apply (f ?A) (apply ?A (f ?A)))))
|
|
||||||
|
|
||||||
;--------------------------------------------------------------------------
|
|
|
@ -1,52 +0,0 @@
|
||||||
;--------------------------------------------------------------------------
|
|
||||||
; File : COL049-1 : TPTP v2.2.0. Released v1.0.0.
|
|
||||||
; Domain : Combinatory Logic
|
|
||||||
; Problem : Strong fixed point for B, W, and M
|
|
||||||
; Version : [WM88] (equality) axioms.
|
|
||||||
; English : The strong fixed point property holds for the set
|
|
||||||
; P consisting of the combinators B, W, and M, where ((Bx)y)z
|
|
||||||
; = x(yz), (Wx)y = (xy)y, Mx = xx.
|
|
||||||
|
|
||||||
; Refs : [Smu85] Smullyan (1978), To Mock a Mocking Bird and Other Logi
|
|
||||||
; : [MW87] McCune & Wos (1987), A Case Study in Automated Theorem
|
|
||||||
; : [WM88] Wos & McCune (1988), Challenge Problems Focusing on Eq
|
|
||||||
; : [Ove90] Overbeek (1990), ATP competition announced at CADE-10
|
|
||||||
; : [LW92] Lusk & Wos (1992), Benchmark Problems in Which Equalit
|
|
||||||
; : [Wos93] Wos (1993), The Kernel Strategy and Its Use for the St
|
|
||||||
; : [Ove93] Overbeek (1993), The CADE-11 Competitions: A Personal
|
|
||||||
; : [LM93] Lusk & McCune (1993), Uniform Strategies: The CADE-11
|
|
||||||
; : [Zha93] Zhang (1993), Automated Proofs of Equality Problems in
|
|
||||||
; Source : [Ove90]
|
|
||||||
; Names : Problem 2 [WM88]
|
|
||||||
; : CADE-11 Competition Eq-6 [Ove90]
|
|
||||||
; : CL1 [LW92]
|
|
||||||
; : THEOREM EQ-6 [LM93]
|
|
||||||
; : Question 2 [Wos93]
|
|
||||||
; : PROBLEM 6 [Zha93]
|
|
||||||
|
|
||||||
; Status : unsatisfiable
|
|
||||||
; Rating : 0.22 v2.2.0, 0.14 v2.1.0, 0.62 v2.0.0
|
|
||||||
; Syntax : Number of clauses : 4 ( 0 non-Horn; 4 unit; 1 RR)
|
|
||||||
; Number of literals : 4 ( 4 equality)
|
|
||||||
; Maximal clause size : 1 ( 1 average)
|
|
||||||
; Number of predicates : 1 ( 0 propositional; 2-2 arity)
|
|
||||||
; Number of functors : 5 ( 3 constant; 0-2 arity)
|
|
||||||
; Number of variables : 7 ( 0 singleton)
|
|
||||||
; Maximal term depth : 4 ( 3 average)
|
|
||||||
|
|
||||||
; Comments :
|
|
||||||
; : tptp2X -f kif -t rm_equality:rstfp COL049-1.p
|
|
||||||
;--------------------------------------------------------------------------
|
|
||||||
; b_definition, axiom.
|
|
||||||
(or (= (apply (apply (apply b ?A) ?B) ?C) (apply ?A (apply ?B ?C))))
|
|
||||||
|
|
||||||
; w_definition, axiom.
|
|
||||||
(or (= (apply (apply w ?A) ?B) (apply (apply ?A ?B) ?B)))
|
|
||||||
|
|
||||||
; m_definition, axiom.
|
|
||||||
(or (= (apply m ?A) (apply ?A ?A)))
|
|
||||||
|
|
||||||
; prove_strong_fixed_point, conjecture.
|
|
||||||
(or (/= (apply ?A (f ?A)) (apply (f ?A) (apply ?A (f ?A)))))
|
|
||||||
|
|
||||||
;--------------------------------------------------------------------------
|
|
|
@ -1,78 +0,0 @@
|
||||||
;--------------------------------------------------------------------------
|
|
||||||
; File : GRP001-1 : TPTP v2.2.0. Released v1.0.0.
|
|
||||||
; Domain : Group Theory
|
|
||||||
; Problem : X^2 = identity => commutativity
|
|
||||||
; Version : [MOW76] axioms.
|
|
||||||
; English : If the square of every element is the identity, the system
|
|
||||||
; is commutative.
|
|
||||||
|
|
||||||
; Refs : [Rob63] Robinson (1963), Theorem Proving on the Computer
|
|
||||||
; : [Wos65] Wos (1965), Unpublished Note
|
|
||||||
; : [MOW76] McCharen et al. (1976), Problems and Experiments for a
|
|
||||||
; : [WM76] Wilson & Minker (1976), Resolution, Refinements, and S
|
|
||||||
; : [Ove90] Overbeek (1990), ATP competition announced at CADE-10
|
|
||||||
; : [Ove93] Overbeek (1993), The CADE-11 Competitions: A Personal
|
|
||||||
; : [LM93] Lusk & McCune (1993), Uniform Strategies: The CADE-11
|
|
||||||
; Source : [MOW76]
|
|
||||||
; Names : - [Rob63]
|
|
||||||
; : wos10 [WM76]
|
|
||||||
; : G1 [MOW76]
|
|
||||||
; : CADE-11 Competition 1 [Ove90]
|
|
||||||
; : THEOREM 1 [LM93]
|
|
||||||
; : xsquared.ver1.in [ANL]
|
|
||||||
|
|
||||||
; Status : unsatisfiable
|
|
||||||
; Rating : 0.00 v2.0.0
|
|
||||||
; Syntax : Number of clauses : 11 ( 0 non-Horn; 8 unit; 5 RR)
|
|
||||||
; Number of literals : 19 ( 1 equality)
|
|
||||||
; Maximal clause size : 4 ( 1 average)
|
|
||||||
; Number of predicates : 2 ( 0 propositional; 2-3 arity)
|
|
||||||
; Number of functors : 6 ( 4 constant; 0-2 arity)
|
|
||||||
; Number of variables : 23 ( 0 singleton)
|
|
||||||
; Maximal term depth : 2 ( 1 average)
|
|
||||||
|
|
||||||
; Comments :
|
|
||||||
; : tptp2X -f kif -t rm_equality:rstfp GRP001-1.p
|
|
||||||
;--------------------------------------------------------------------------
|
|
||||||
; left_identity, axiom.
|
|
||||||
(or (product identity ?A ?A))
|
|
||||||
|
|
||||||
; right_identity, axiom.
|
|
||||||
(or (product ?A identity ?A))
|
|
||||||
|
|
||||||
; left_inverse, axiom.
|
|
||||||
(or (product (inverse ?A) ?A identity))
|
|
||||||
|
|
||||||
; right_inverse, axiom.
|
|
||||||
(or (product ?A (inverse ?A) identity))
|
|
||||||
|
|
||||||
; total_function1, axiom.
|
|
||||||
(or (product ?A ?B (multiply ?A ?B)))
|
|
||||||
|
|
||||||
; total_function2, axiom.
|
|
||||||
(or (not (product ?A ?B ?C))
|
|
||||||
(not (product ?A ?B ?D))
|
|
||||||
(= ?C ?D))
|
|
||||||
|
|
||||||
; associativity1, axiom.
|
|
||||||
(or (not (product ?A ?B ?C))
|
|
||||||
(not (product ?B ?D ?E))
|
|
||||||
(not (product ?C ?D ?F))
|
|
||||||
(product ?A ?E ?F))
|
|
||||||
|
|
||||||
; associativity2, axiom.
|
|
||||||
(or (not (product ?A ?B ?C))
|
|
||||||
(not (product ?B ?D ?E))
|
|
||||||
(not (product ?A ?E ?F))
|
|
||||||
(product ?C ?D ?F))
|
|
||||||
|
|
||||||
; square_element, hypothesis.
|
|
||||||
(or (product ?A ?A identity))
|
|
||||||
|
|
||||||
; a_times_b_is_c, hypothesis.
|
|
||||||
(or (product a b c))
|
|
||||||
|
|
||||||
; prove_b_times_a_is_c, conjecture.
|
|
||||||
(or (not (product b a c)))
|
|
||||||
|
|
||||||
;--------------------------------------------------------------------------
|
|
|
@ -1,98 +0,0 @@
|
||||||
;--------------------------------------------------------------------------
|
|
||||||
; File : GRP002-1 : TPTP v2.2.0. Released v1.0.0.
|
|
||||||
; Domain : Group Theory
|
|
||||||
; Problem : Commutator equals identity in groups of order 3
|
|
||||||
; Version : [MOW76] axioms.
|
|
||||||
; English : In a group, if (for all x) the cube of x is the identity
|
|
||||||
; (i.e. a group of order 3), then the equation [[x,y],y]=
|
|
||||||
; identity holds, where [x,y] is the product of x, y, the
|
|
||||||
; inverse of x and the inverse of y (i.e. the commutator
|
|
||||||
; of x and y).
|
|
||||||
|
|
||||||
; Refs : [MOW76] McCharen et al. (1976), Problems and Experiments for a
|
|
||||||
; : [OMW76] Overbeek et al. (1976), Complexity and Related Enhance
|
|
||||||
; : [Wos88] Wos (1988), Automated Reasoning - 33 Basic Research Pr
|
|
||||||
; : [Ove90] Overbeek (1990), ATP competition announced at CADE-10
|
|
||||||
; : [Ove93] Overbeek (1993), The CADE-11 Competitions: A Personal
|
|
||||||
; : [LM93] Lusk & McCune (1993), Uniform Strategies: The CADE-11
|
|
||||||
; Source : [MOW76]
|
|
||||||
; Names : G6 [MOW76]
|
|
||||||
; : Theorem 1 [OMW76]
|
|
||||||
; : Test Problem 2 [Wos88]
|
|
||||||
; : Commutator Theorem [Wos88]
|
|
||||||
; : CADE-11 Competition 2 [Ove90]
|
|
||||||
; : THEOREM 2 [LM93]
|
|
||||||
; : commutator.ver1.in [ANL]
|
|
||||||
|
|
||||||
; Status : unsatisfiable
|
|
||||||
; Rating : 0.67 v2.2.0, 0.71 v2.1.0, 1.00 v2.0.0
|
|
||||||
; Syntax : Number of clauses : 16 ( 0 non-Horn; 11 unit; 11 RR)
|
|
||||||
; Number of literals : 26 ( 1 equality)
|
|
||||||
; Maximal clause size : 4 ( 1 average)
|
|
||||||
; Number of predicates : 2 ( 0 propositional; 2-3 arity)
|
|
||||||
; Number of functors : 10 ( 8 constant; 0-2 arity)
|
|
||||||
; Number of variables : 26 ( 0 singleton)
|
|
||||||
; Maximal term depth : 2 ( 1 average)
|
|
||||||
|
|
||||||
; Comments :
|
|
||||||
; : tptp2X -f kif -t rm_equality:rstfp GRP002-1.p
|
|
||||||
;--------------------------------------------------------------------------
|
|
||||||
; left_identity, axiom.
|
|
||||||
(or (product identity ?A ?A))
|
|
||||||
|
|
||||||
; right_identity, axiom.
|
|
||||||
(or (product ?A identity ?A))
|
|
||||||
|
|
||||||
; left_inverse, axiom.
|
|
||||||
(or (product (inverse ?A) ?A identity))
|
|
||||||
|
|
||||||
; right_inverse, axiom.
|
|
||||||
(or (product ?A (inverse ?A) identity))
|
|
||||||
|
|
||||||
; total_function1, axiom.
|
|
||||||
(or (product ?A ?B (multiply ?A ?B)))
|
|
||||||
|
|
||||||
; total_function2, axiom.
|
|
||||||
(or (not (product ?A ?B ?C))
|
|
||||||
(not (product ?A ?B ?D))
|
|
||||||
(= ?C ?D))
|
|
||||||
|
|
||||||
; associativity1, axiom.
|
|
||||||
(or (not (product ?A ?B ?C))
|
|
||||||
(not (product ?B ?D ?E))
|
|
||||||
(not (product ?C ?D ?F))
|
|
||||||
(product ?A ?E ?F))
|
|
||||||
|
|
||||||
; associativity2, axiom.
|
|
||||||
(or (not (product ?A ?B ?C))
|
|
||||||
(not (product ?B ?D ?E))
|
|
||||||
(not (product ?A ?E ?F))
|
|
||||||
(product ?C ?D ?F))
|
|
||||||
|
|
||||||
; x_cubed_is_identity_1, hypothesis.
|
|
||||||
(or (not (product ?A ?A ?B))
|
|
||||||
(product ?A ?B identity))
|
|
||||||
|
|
||||||
; x_cubed_is_identity_2, hypothesis.
|
|
||||||
(or (not (product ?A ?A ?B))
|
|
||||||
(product ?B ?A identity))
|
|
||||||
|
|
||||||
; a_times_b_is_c, conjecture.
|
|
||||||
(or (product a b c))
|
|
||||||
|
|
||||||
; c_times_inverse_a_is_d, conjecture.
|
|
||||||
(or (product c (inverse a) d))
|
|
||||||
|
|
||||||
; d_times_inverse_b_is_h, conjecture.
|
|
||||||
(or (product d (inverse b) h))
|
|
||||||
|
|
||||||
; h_times_b_is_j, conjecture.
|
|
||||||
(or (product h b j))
|
|
||||||
|
|
||||||
; j_times_inverse_h_is_k, conjecture.
|
|
||||||
(or (product j (inverse h) k))
|
|
||||||
|
|
||||||
; prove_k_times_inverse_b_is_e, conjecture.
|
|
||||||
(or (not (product k (inverse b) identity)))
|
|
||||||
|
|
||||||
;--------------------------------------------------------------------------
|
|
|
@ -1,53 +0,0 @@
|
||||||
;--------------------------------------------------------------------------
|
|
||||||
; File : GRP002-3 : TPTP v2.2.0. Released v1.0.0.
|
|
||||||
; Domain : Group Theory
|
|
||||||
; Problem : Commutator equals identity in groups of order 3
|
|
||||||
; Version : [Ove90] (equality) axioms : Incomplete.
|
|
||||||
; English : In a group, if (for all x) the cube of x is the identity
|
|
||||||
; (i.e. a group of order 3), then the equation [[x,y],y]=
|
|
||||||
; identity holds, where [x,y] is the product of x, y, the
|
|
||||||
; inverse of x and the inverse of y (i.e. the commutator
|
|
||||||
; of x and y).
|
|
||||||
|
|
||||||
; Refs : [Ove90] Overbeek (1990), ATP competition announced at CADE-10
|
|
||||||
; : [Ove93] Overbeek (1993), The CADE-11 Competitions: A Personal
|
|
||||||
; : [LM93] Lusk & McCune (1993), Uniform Strategies: The CADE-11
|
|
||||||
; : [Zha93] Zhang (1993), Automated Proofs of Equality Problems in
|
|
||||||
; Source : [Ove90]
|
|
||||||
; Names : CADE-11 Competition Eq-1 [Ove90]
|
|
||||||
; : THEOREM EQ-1 [LM93]
|
|
||||||
; : PROBLEM 1 [Zha93]
|
|
||||||
; : comm.in [OTTER]
|
|
||||||
|
|
||||||
; Status : unsatisfiable
|
|
||||||
; Rating : 0.33 v2.2.0, 0.43 v2.1.0, 0.25 v2.0.0
|
|
||||||
; Syntax : Number of clauses : 6 ( 0 non-Horn; 6 unit; 1 RR)
|
|
||||||
; Number of literals : 6 ( 6 equality)
|
|
||||||
; Maximal clause size : 1 ( 1 average)
|
|
||||||
; Number of predicates : 1 ( 0 propositional; 2-2 arity)
|
|
||||||
; Number of functors : 6 ( 3 constant; 0-2 arity)
|
|
||||||
; Number of variables : 8 ( 0 singleton)
|
|
||||||
; Maximal term depth : 5 ( 2 average)
|
|
||||||
|
|
||||||
; Comments : Uses an explicit formulation of the commutator.
|
|
||||||
; : tptp2X -f kif -t rm_equality:rstfp GRP002-3.p
|
|
||||||
;--------------------------------------------------------------------------
|
|
||||||
; left_identity, axiom.
|
|
||||||
(or (= (multiply identity ?A) ?A))
|
|
||||||
|
|
||||||
; left_inverse, axiom.
|
|
||||||
(or (= (multiply (inverse ?A) ?A) identity))
|
|
||||||
|
|
||||||
; associativity, axiom.
|
|
||||||
(or (= (multiply (multiply ?A ?B) ?C) (multiply ?A (multiply ?B ?C))))
|
|
||||||
|
|
||||||
; commutator, axiom.
|
|
||||||
(or (= (commutator ?A ?B) (multiply ?A (multiply ?B (multiply (inverse ?A) (inverse ?B))))))
|
|
||||||
|
|
||||||
; x_cubed_is_identity, hypothesis.
|
|
||||||
(or (= (multiply ?A (multiply ?A ?A)) identity))
|
|
||||||
|
|
||||||
; prove_commutator, conjecture.
|
|
||||||
(or (/= (commutator (commutator a b) b) identity))
|
|
||||||
|
|
||||||
;--------------------------------------------------------------------------
|
|
|
@ -1,38 +0,0 @@
|
||||||
;--------------------------------------------------------------------------
|
|
||||||
; File : GRP014-1 : TPTP v2.2.0. Released v1.0.0.
|
|
||||||
; Domain : Group Theory
|
|
||||||
; Problem : Product is associative in this group theory
|
|
||||||
; Version : [Ove90] (equality) axioms : Incomplete.
|
|
||||||
; English : The group theory specified by the axiom given implies the
|
|
||||||
; associativity of multiply.
|
|
||||||
|
|
||||||
; Refs : [Ove90] Overbeek (1990), ATP competition announced at CADE-10
|
|
||||||
; : [Ove93] Overbeek (1993), The CADE-11 Competitions: A Personal
|
|
||||||
; : [LM93] Lusk & McCune (1993), Uniform Strategies: The CADE-11
|
|
||||||
; : [Zha93] Zhang (1993), Automated Proofs of Equality Problems in
|
|
||||||
; Source : [Ove90]
|
|
||||||
; Names : CADE-11 Competition Eq-4 [Ove90]
|
|
||||||
; : THEOREM EQ-4 [LM93]
|
|
||||||
; : PROBLEM 4 [Zha93]
|
|
||||||
|
|
||||||
; Status : unsatisfiable
|
|
||||||
; Rating : 0.33 v2.2.0, 0.43 v2.1.0, 0.50 v2.0.0
|
|
||||||
; Syntax : Number of clauses : 2 ( 0 non-Horn; 2 unit; 1 RR)
|
|
||||||
; Number of literals : 2 ( 2 equality)
|
|
||||||
; Maximal clause size : 1 ( 1 average)
|
|
||||||
; Number of predicates : 1 ( 0 propositional; 2-2 arity)
|
|
||||||
; Number of functors : 5 ( 3 constant; 0-2 arity)
|
|
||||||
; Number of variables : 4 ( 0 singleton)
|
|
||||||
; Maximal term depth : 9 ( 4 average)
|
|
||||||
|
|
||||||
; Comments : The group_axiom is in fact a single axiom for group theory
|
|
||||||
; [LM93].
|
|
||||||
; : tptp2X -f kif -t rm_equality:rstfp GRP014-1.p
|
|
||||||
;--------------------------------------------------------------------------
|
|
||||||
; group_axiom, axiom.
|
|
||||||
(or (= (multiply ?A (inverse (multiply (multiply (inverse (multiply (inverse ?B) (multiply (inverse ?A) ?C))) ?D) (inverse (multiply ?B ?D))))) ?C))
|
|
||||||
|
|
||||||
; prove_associativity, conjecture.
|
|
||||||
(or (/= (multiply a (multiply b c)) (multiply (multiply a b) c)))
|
|
||||||
|
|
||||||
;--------------------------------------------------------------------------
|
|
|
@ -1,44 +0,0 @@
|
||||||
;--------------------------------------------------------------------------
|
|
||||||
; File : LCL024-1 : TPTP v2.2.0. Released v1.0.0.
|
|
||||||
; Domain : Logic Calculi (Equivalential)
|
|
||||||
; Problem : PYO depends on XGK
|
|
||||||
; Version : [Ove90] axioms.
|
|
||||||
; English : Show that Kalman's shortest single axiom for the
|
|
||||||
; equivalential calculus, XGK, can be derived from the Meredith
|
|
||||||
; single axiom PYO.
|
|
||||||
|
|
||||||
; Refs : [Wos88] Wos (1988), Automated Reasoning - 33 Basic Research Pr
|
|
||||||
; : [Ove90] Overbeek (1990), ATP competition announced at CADE-10
|
|
||||||
; : [Ove93] Overbeek (1993), The CADE-11 Competitions: A Personal
|
|
||||||
; : [LM93] Lusk & McCune (1993), Uniform Strategies: The CADE-11
|
|
||||||
; Source : [Ove90]
|
|
||||||
; Names : Test Problem 16 [Wos88]
|
|
||||||
; : XGK and Equivalential Calculus [Wos88]
|
|
||||||
; : CADE-11 Competition 4 [Ove90]
|
|
||||||
; : THEOREM 4 [LM93]
|
|
||||||
|
|
||||||
; Status : unsatisfiable
|
|
||||||
; Rating : 0.78 v2.2.0, 0.89 v2.1.0, 0.75 v2.0.0
|
|
||||||
; Syntax : Number of clauses : 3 ( 0 non-Horn; 2 unit; 2 RR)
|
|
||||||
; Number of literals : 5 ( 0 equality)
|
|
||||||
; Maximal clause size : 3 ( 1 average)
|
|
||||||
; Number of predicates : 1 ( 0 propositional; 1-1 arity)
|
|
||||||
; Number of functors : 4 ( 3 constant; 0-2 arity)
|
|
||||||
; Number of variables : 5 ( 0 singleton)
|
|
||||||
; Maximal term depth : 5 ( 2 average)
|
|
||||||
|
|
||||||
; Comments :
|
|
||||||
; : tptp2X -f kif -t rm_equality:rstfp LCL024-1.p
|
|
||||||
;--------------------------------------------------------------------------
|
|
||||||
; condensed_detachment, axiom.
|
|
||||||
(or (not (is_a_theorem (equivalent ?A ?B)))
|
|
||||||
(not (is_a_theorem ?A))
|
|
||||||
(is_a_theorem ?B))
|
|
||||||
|
|
||||||
; prove_xgk, axiom.
|
|
||||||
(or (is_a_theorem (equivalent ?A (equivalent (equivalent ?B (equivalent ?C ?A)) (equivalent ?C ?B)))))
|
|
||||||
|
|
||||||
; prove_pyo, conjecture.
|
|
||||||
(or (not (is_a_theorem (equivalent (equivalent (equivalent a (equivalent b c)) c) (equivalent b a)))))
|
|
||||||
|
|
||||||
;--------------------------------------------------------------------------
|
|
|
@ -1,42 +0,0 @@
|
||||||
;--------------------------------------------------------------------------
|
|
||||||
; File : LCL038-1 : TPTP v2.2.0. Released v1.0.0.
|
|
||||||
; Domain : Logic Calculi (Implication/Falsehood 2 valued sentential)
|
|
||||||
; Problem : C0-1 depends on a single axiom
|
|
||||||
; Version : [McC92] axioms.
|
|
||||||
; English : An axiomatisation for the Implication/Falsehood 2 valued
|
|
||||||
; sentential calculus is {C0-1,C0-2,C0-3,C0-4}
|
|
||||||
; by Tarski-Bernays. Show that C0-1 can be derived from this
|
|
||||||
; suspected single axiom.
|
|
||||||
|
|
||||||
; Refs : [Ove90] Overbeek (1990), ATP competition announced at CADE-10
|
|
||||||
; : [Ove93] Overbeek (1993), The CADE-11 Competitions: A Personal
|
|
||||||
; : [LM93] Lusk & McCune (1993), Uniform Strategies: The CADE-11
|
|
||||||
; Source : [Ove90]
|
|
||||||
; Names : CADE-11 Competition 5 [Ove90]
|
|
||||||
; : THEOREM 5 [LM93]
|
|
||||||
|
|
||||||
; Status : unsatisfiable
|
|
||||||
; Rating : 0.89 v2.2.0, 1.00 v2.0.0
|
|
||||||
; Syntax : Number of clauses : 3 ( 0 non-Horn; 2 unit; 2 RR)
|
|
||||||
; Number of literals : 5 ( 0 equality)
|
|
||||||
; Maximal clause size : 3 ( 1 average)
|
|
||||||
; Number of predicates : 1 ( 0 propositional; 1-1 arity)
|
|
||||||
; Number of functors : 4 ( 3 constant; 0-2 arity)
|
|
||||||
; Number of variables : 6 ( 2 singleton)
|
|
||||||
; Maximal term depth : 4 ( 2 average)
|
|
||||||
|
|
||||||
; Comments :
|
|
||||||
; : tptp2X -f kif -t rm_equality:rstfp LCL038-1.p
|
|
||||||
;--------------------------------------------------------------------------
|
|
||||||
; condensed_detachment, axiom.
|
|
||||||
(or (not (is_a_theorem (implies ?A ?B)))
|
|
||||||
(not (is_a_theorem ?A))
|
|
||||||
(is_a_theorem ?B))
|
|
||||||
|
|
||||||
; single_axiom, axiom.
|
|
||||||
(or (is_a_theorem (implies (implies (implies ?A ?B) ?C) (implies (implies ?C ?A) (implies ?D ?A)))))
|
|
||||||
|
|
||||||
; prove_c0_1, conjecture.
|
|
||||||
(or (not (is_a_theorem (implies (implies a b) (implies (implies b c) (implies a c))))))
|
|
||||||
|
|
||||||
;--------------------------------------------------------------------------
|
|
|
@ -1,54 +0,0 @@
|
||||||
;--------------------------------------------------------------------------
|
|
||||||
; File : LCL109-2 : TPTP v2.2.0. Released v1.0.0.
|
|
||||||
; Domain : Logic Calculi (Many valued sentential)
|
|
||||||
; Problem : MV-4 depends on the Merideth system
|
|
||||||
; Version : [Ove90] axioms.
|
|
||||||
; Theorem formulation : Wajsberg algebra formulation.
|
|
||||||
; English : An axiomatisation of the many valued sentential calculus
|
|
||||||
; is {MV-1,MV-2,MV-3,MV-5} by Meredith. Wajsberg provided
|
|
||||||
; a different axiomatisation. Show that MV-4 depends on the
|
|
||||||
; Wajsberg system.
|
|
||||||
|
|
||||||
; Refs : [Ove90] Overbeek (1990), ATP competition announced at CADE-10
|
|
||||||
; : [LM92] Lusk & McCune (1992), Experiments with ROO, a Parallel
|
|
||||||
; : [LW92] Lusk & Wos (1992), Benchmark Problems in Which Equalit
|
|
||||||
; : [Ove93] Overbeek (1993), The CADE-11 Competitions: A Personal
|
|
||||||
; : [LM93] Lusk & McCune (1993), Uniform Strategies: The CADE-11
|
|
||||||
; : [Zha93] Zhang (1993), Automated Proofs of Equality Problems in
|
|
||||||
; Source : [Ove90]
|
|
||||||
; Names : CADE-11 Competition Eq-5 [Ove90]
|
|
||||||
; : Luka-5 [LM92]
|
|
||||||
; : MV4 [LW92]
|
|
||||||
; : THEOREM EQ-5 [LM93]
|
|
||||||
; : PROBLEM 5 [Zha93]
|
|
||||||
|
|
||||||
; Status : unsatisfiable
|
|
||||||
; Rating : 0.56 v2.2.0, 0.71 v2.1.0, 1.00 v2.0.0
|
|
||||||
; Syntax : Number of clauses : 5 ( 0 non-Horn; 5 unit; 1 RR)
|
|
||||||
; Number of literals : 5 ( 5 equality)
|
|
||||||
; Maximal clause size : 1 ( 1 average)
|
|
||||||
; Number of predicates : 1 ( 0 propositional; 2-2 arity)
|
|
||||||
; Number of functors : 5 ( 3 constant; 0-2 arity)
|
|
||||||
; Number of variables : 8 ( 0 singleton)
|
|
||||||
; Maximal term depth : 4 ( 2 average)
|
|
||||||
|
|
||||||
; Comments :
|
|
||||||
; : tptp2X -f kif -t rm_equality:rstfp LCL109-2.p
|
|
||||||
; ; 'true' renamed to 'true0' - MES
|
|
||||||
;--------------------------------------------------------------------------
|
|
||||||
; wajsberg_1, axiom.
|
|
||||||
(or (= (implies true0 ?A) ?A))
|
|
||||||
|
|
||||||
; wajsberg_2, axiom.
|
|
||||||
(or (= (implies (implies ?A ?B) (implies (implies ?B ?C) (implies ?A ?C))) true0))
|
|
||||||
|
|
||||||
; wajsberg_3, axiom.
|
|
||||||
(or (= (implies (implies ?A ?B) ?B) (implies (implies ?B ?A) ?A)))
|
|
||||||
|
|
||||||
; wajsberg_4, axiom.
|
|
||||||
(or (= (implies (implies (not ?A) (not ?B)) (implies ?B ?A)) true0))
|
|
||||||
|
|
||||||
; prove_wajsberg_mv_4, conjecture.
|
|
||||||
(or (/= (implies (implies (implies a b) (implies b a)) (implies b a)) true0))
|
|
||||||
|
|
||||||
;--------------------------------------------------------------------------
|
|
|
@ -1,55 +0,0 @@
|
||||||
%------------------------------------------------------------------------------
|
|
||||||
% File : LCL111-1 : TPTP v3.0.0. Released v1.0.0.
|
|
||||||
% Domain : Logic Calculi (Many valued sentential)
|
|
||||||
% Problem : MV-25 depends on the Merideth system
|
|
||||||
% Version : [McC92] axioms.
|
|
||||||
% English : An axiomatisation of the many valued sentential calculus
|
|
||||||
% is {MV-1,MV-2,MV-3,MV-5} by Meredith. Show that MV-25 depends
|
|
||||||
% on the Meredith system.
|
|
||||||
|
|
||||||
% Refs : [Ove90] Overbeek (1990), ATP competition announced at CADE-10
|
|
||||||
% : [MW92] McCune & Wos (1992), Experiments in Automated Deductio
|
|
||||||
% : [McC92] McCune (1992), Email to G. Sutcliffe
|
|
||||||
% : [Ove93] Overbeek (1993), The CADE-11 Competitions: A Personal
|
|
||||||
% : [LM93] Lusk & McCune (1993), Uniform Strategies: The CADE-11
|
|
||||||
% Source : [McC92]
|
|
||||||
% Names : CADE-11 Competition 6 [Ove90]
|
|
||||||
% : MV-57 [MW92]
|
|
||||||
% : THEOREM 6 [LM93]
|
|
||||||
% : mv.in part 2 [OTTER]
|
|
||||||
% : mv25.in [OTTER]
|
|
||||||
% : ovb6 [SETHEO]
|
|
||||||
|
|
||||||
% Status : Unsatisfiable
|
|
||||||
% Rating : 0.00 v2.4.0, 0.43 v2.3.0, 0.14 v2.2.1, 0.11 v2.2.0, 0.22 v2.1.0, 0.25 v2.0.0
|
|
||||||
% Syntax : Number of clauses : 6 ( 0 non-Horn; 5 unit; 2 RR)
|
|
||||||
% Number of atoms : 8 ( 0 equality)
|
|
||||||
% Maximal clause size : 3 ( 1 average)
|
|
||||||
% Number of predicates : 1 ( 0 propositional; 1-1 arity)
|
|
||||||
% Number of functors : 5 ( 3 constant; 0-2 arity)
|
|
||||||
% Number of variables : 11 ( 1 singleton)
|
|
||||||
% Maximal term depth : 4 ( 3 average)
|
|
||||||
|
|
||||||
% Comments :
|
|
||||||
% : tptp2X -f tptp:short LCL111-1.p
|
|
||||||
%------------------------------------------------------------------------------
|
|
||||||
cnf(condensed_detachment,axiom,(
|
|
||||||
~ is_a_theorem(implies(X,Y))
|
|
||||||
| ~ is_a_theorem(X)
|
|
||||||
| is_a_theorem(Y) )).
|
|
||||||
|
|
||||||
cnf(mv_1,axiom,(
|
|
||||||
is_a_theorem(implies(X,implies(Y,X))) )).
|
|
||||||
|
|
||||||
cnf(mv_2,axiom,(
|
|
||||||
is_a_theorem(implies(implies(X,Y),implies(implies(Y,Z),implies(X,Z)))) )).
|
|
||||||
|
|
||||||
cnf(mv_3,axiom,(
|
|
||||||
is_a_theorem(implies(implies(implies(X,Y),Y),implies(implies(Y,X),X))) )).
|
|
||||||
|
|
||||||
cnf(mv_5,axiom,(
|
|
||||||
is_a_theorem(implies(implies(not(X),not(Y)),implies(Y,X))) )).
|
|
||||||
|
|
||||||
cnf(prove_mv_25,negated_conjecture,(
|
|
||||||
~ is_a_theorem(implies(implies(a,b),implies(implies(c,a),implies(c,b)))) )).
|
|
||||||
%------------------------------------------------------------------------------
|
|
|
@ -1,53 +0,0 @@
|
||||||
;--------------------------------------------------------------------------
|
|
||||||
; File : LCL114-1 : TPTP v2.2.0. Released v1.0.0.
|
|
||||||
; Domain : Logic Calculi (Many valued sentential)
|
|
||||||
; Problem : MV-36 depnds on the Merideth system
|
|
||||||
; Version : [McC92] axioms.
|
|
||||||
; English : An axiomatisation of the many valued sentential calculus
|
|
||||||
; is {MV-1,MV-2,MV-3,MV-5} by Meredith. Show that 36 depends
|
|
||||||
; on the Meredith system.
|
|
||||||
|
|
||||||
; Refs : [Ove90] Overbeek (1990), ATP competition announced at CADE-10
|
|
||||||
; : [MW92] McCune & Wos (1992), Experiments in Automated Deductio
|
|
||||||
; : [McC92] McCune (1992), Email to G. Sutcliffe
|
|
||||||
; : [Ove93] Overbeek (1993), The CADE-11 Competitions: A Personal
|
|
||||||
; : [LM93] Lusk & McCune (1993), Uniform Strategies: The CADE-11
|
|
||||||
; Source : [McC92]
|
|
||||||
; Names : CADE-11 Competition 7 [Ove90]
|
|
||||||
; : MV-60 [MW92]
|
|
||||||
; : THEOREM 7 [LM93]
|
|
||||||
|
|
||||||
; Status : unsatisfiable
|
|
||||||
; Rating : 0.89 v2.1.0, 0.88 v2.0.0
|
|
||||||
; Syntax : Number of clauses : 6 ( 0 non-Horn; 5 unit; 2 RR)
|
|
||||||
; Number of literals : 8 ( 0 equality)
|
|
||||||
; Maximal clause size : 3 ( 1 average)
|
|
||||||
; Number of predicates : 1 ( 0 propositional; 1-1 arity)
|
|
||||||
; Number of functors : 4 ( 2 constant; 0-2 arity)
|
|
||||||
; Number of variables : 11 ( 1 singleton)
|
|
||||||
; Maximal term depth : 4 ( 2 average)
|
|
||||||
|
|
||||||
; Comments :
|
|
||||||
; : tptp2X -f kif -t rm_equality:rstfp LCL114-1.p
|
|
||||||
;--------------------------------------------------------------------------
|
|
||||||
; condensed_detachment, axiom.
|
|
||||||
(or (not (is_a_theorem (implies ?A ?B)))
|
|
||||||
(not (is_a_theorem ?A))
|
|
||||||
(is_a_theorem ?B))
|
|
||||||
|
|
||||||
; mv_1, axiom.
|
|
||||||
(or (is_a_theorem (implies ?A (implies ?B ?A))))
|
|
||||||
|
|
||||||
; mv_2, axiom.
|
|
||||||
(or (is_a_theorem (implies (implies ?A ?B) (implies (implies ?B ?C) (implies ?A ?C)))))
|
|
||||||
|
|
||||||
; mv_3, axiom.
|
|
||||||
(or (is_a_theorem (implies (implies (implies ?A ?B) ?B) (implies (implies ?B ?A) ?A))))
|
|
||||||
|
|
||||||
; mv_5, axiom.
|
|
||||||
(or (is_a_theorem (implies (implies (not ?A) (not ?B)) (implies ?B ?A))))
|
|
||||||
|
|
||||||
; prove_mv_36, conjecture.
|
|
||||||
(or (not (is_a_theorem (implies (implies a b) (implies (not b) (not a))))))
|
|
||||||
|
|
||||||
;--------------------------------------------------------------------------
|
|
|
@ -1,155 +0,0 @@
|
||||||
;--------------------------------------------------------------------------
|
|
||||||
; File : PUZ031+1 : TPTP v2.2.0. Released v2.0.0.
|
|
||||||
; Domain : Puzzles
|
|
||||||
; Problem : Schubert's Steamroller
|
|
||||||
; Version : Especial.
|
|
||||||
; English : Wolves, foxes, birds, caterpillars, and snails are animals, and
|
|
||||||
; there are some of each of them. Also there are some grains, and
|
|
||||||
; grains are plants. Every animal either likes to eat all plants
|
|
||||||
; or all animals much smaller than itself that like to eat some
|
|
||||||
; plants. Caterpillars and snails are much smaller than birds,
|
|
||||||
; which are much smaller than foxes, which in turn are much
|
|
||||||
; smaller than wolves. Wolves do not like to eat foxes or grains,
|
|
||||||
; while birds like to eat caterpillars but not snails.
|
|
||||||
; Caterpillars and snails like to eat some plants. Therefore
|
|
||||||
; there is an animal that likes to eat a grain eating animal.
|
|
||||||
|
|
||||||
; Refs : [Pel86] Pelletier (1986), Seventy-five Problems for Testing Au
|
|
||||||
; : [Hah94] Haehnle (1994), Email to G. Sutcliffe
|
|
||||||
; Source : [Hah94]
|
|
||||||
; Names : Pelletier 47 [Pel86]
|
|
||||||
|
|
||||||
; Status : theorem
|
|
||||||
; Rating : 0.00 v2.1.0
|
|
||||||
; Syntax : Number of formulae : 21 ( 6 unit)
|
|
||||||
; Number of atoms : 55 ( 0 equality)
|
|
||||||
; Maximal formula depth : 9 ( 3 average)
|
|
||||||
; Number of connectives : 36 ( 2 ~ ; 4 |; 14 &)
|
|
||||||
; ( 0 <=>; 16 =>; 0 <=)
|
|
||||||
; ( 0 <~>; 0 ~|; 0 ~&)
|
|
||||||
; Number of predicates : 10 ( 0 propositional; 1-2 arity)
|
|
||||||
; Number of functors : 0 ( 0 constant; --- arity)
|
|
||||||
; Number of variables : 33 ( 0 singleton; 22 !; 11 ?)
|
|
||||||
; Maximal term depth : 1 ( 1 average)
|
|
||||||
|
|
||||||
; Comments : This problem is named after Len Schubert.
|
|
||||||
; : tptp2X -f kif PUZ031+1.p
|
|
||||||
;--------------------------------------------------------------------------
|
|
||||||
; pel47_1_1, axiom.
|
|
||||||
(forall (?A)
|
|
||||||
(=> (wolf ?A)
|
|
||||||
(animal ?A) ) )
|
|
||||||
|
|
||||||
; pel47_1_2, axiom.
|
|
||||||
(exists (?A)(wolf ?A) )
|
|
||||||
|
|
||||||
; pel47_2_1, axiom.
|
|
||||||
(forall (?A)
|
|
||||||
(=> (fox ?A)
|
|
||||||
(animal ?A) ) )
|
|
||||||
|
|
||||||
; pel47_2_2, axiom.
|
|
||||||
(exists (?A)(fox ?A) )
|
|
||||||
|
|
||||||
; pel47_3_1, axiom.
|
|
||||||
(forall (?A)
|
|
||||||
(=> (bird ?A)
|
|
||||||
(animal ?A) ) )
|
|
||||||
|
|
||||||
; pel47_3_2, axiom.
|
|
||||||
(exists (?A)(bird ?A) )
|
|
||||||
|
|
||||||
; pel47_4_1, axiom.
|
|
||||||
(forall (?A)
|
|
||||||
(=> (caterpillar ?A)
|
|
||||||
(animal ?A) ) )
|
|
||||||
|
|
||||||
; pel47_4_2, axiom.
|
|
||||||
(exists (?A)(caterpillar ?A) )
|
|
||||||
|
|
||||||
; pel47_5_1, axiom.
|
|
||||||
(forall (?A)
|
|
||||||
(=> (snail ?A)
|
|
||||||
(animal ?A) ) )
|
|
||||||
|
|
||||||
; pel47_5_2, axiom.
|
|
||||||
(exists (?A)(snail ?A) )
|
|
||||||
|
|
||||||
; pel47_6_1, axiom.
|
|
||||||
(exists (?A)(grain ?A) )
|
|
||||||
|
|
||||||
; pel47_6_2, axiom.
|
|
||||||
(forall (?A)
|
|
||||||
(=> (grain ?A)
|
|
||||||
(plant ?A) ) )
|
|
||||||
|
|
||||||
; pel47_7, axiom.
|
|
||||||
(forall (?A)
|
|
||||||
(=> (animal ?A)
|
|
||||||
(or (forall (?B)
|
|
||||||
(=> (plant ?B)
|
|
||||||
(eats ?A ?B) ) )
|
|
||||||
(forall (?C)
|
|
||||||
(=> (and (and (animal ?C)
|
|
||||||
(much_smaller ?C ?A) )
|
|
||||||
(exists (?D)
|
|
||||||
(and (plant ?D)
|
|
||||||
(eats ?C ?D) ) ) )
|
|
||||||
(eats ?A ?C) ) ) ) ) )
|
|
||||||
|
|
||||||
; pel47_8, axiom.
|
|
||||||
(forall (?A ?B)
|
|
||||||
(=> (and (bird ?B)
|
|
||||||
(or (snail ?A)
|
|
||||||
(caterpillar ?A) ) )
|
|
||||||
(much_smaller ?A ?B) ) )
|
|
||||||
|
|
||||||
; pel47_9, axiom.
|
|
||||||
(forall (?A ?B)
|
|
||||||
(=> (and (bird ?A)
|
|
||||||
(fox ?B) )
|
|
||||||
(much_smaller ?A ?B) ) )
|
|
||||||
|
|
||||||
; pel47_10, axiom.
|
|
||||||
(forall (?A ?B)
|
|
||||||
(=> (and (fox ?A)
|
|
||||||
(wolf ?B) )
|
|
||||||
(much_smaller ?A ?B) ) )
|
|
||||||
|
|
||||||
; pel47_11, axiom.
|
|
||||||
(forall (?A ?B)
|
|
||||||
(=> (and (wolf ?A)
|
|
||||||
(or (fox ?B)
|
|
||||||
(grain ?B) ) )
|
|
||||||
(not (eats ?A ?B) ) ) )
|
|
||||||
|
|
||||||
; pel47_12, axiom.
|
|
||||||
(forall (?A ?B)
|
|
||||||
(=> (and (bird ?A)
|
|
||||||
(caterpillar ?B) )
|
|
||||||
(eats ?A ?B) ) )
|
|
||||||
|
|
||||||
; pel47_13, axiom.
|
|
||||||
(forall (?A ?B)
|
|
||||||
(=> (and (bird ?A)
|
|
||||||
(snail ?B) )
|
|
||||||
(not (eats ?A ?B) ) ) )
|
|
||||||
|
|
||||||
; pel47_14, axiom.
|
|
||||||
(forall (?A)
|
|
||||||
(=> (or (caterpillar ?A)
|
|
||||||
(snail ?A) )
|
|
||||||
(exists (?B)
|
|
||||||
(and (plant ?B)
|
|
||||||
(eats ?A ?B) ) ) ) )
|
|
||||||
|
|
||||||
; pel47, conjecture.
|
|
||||||
(not (exists (?A ?B)
|
|
||||||
(and (and (animal ?A)
|
|
||||||
(animal ?B) )
|
|
||||||
(exists (?C)
|
|
||||||
(and (and (grain ?C)
|
|
||||||
(eats ?B ?C) )
|
|
||||||
(eats ?A ?B) ) ) ) ) )
|
|
||||||
|
|
||||||
;--------------------------------------------------------------------------
|
|
|
@ -1,129 +0,0 @@
|
||||||
;--------------------------------------------------------------------------
|
|
||||||
; File : RNG008-6 : TPTP v2.2.0. Released v1.0.0.
|
|
||||||
; Domain : Ring Theory
|
|
||||||
; Problem : Boolean rings are commutative
|
|
||||||
; Version : [MOW76] axioms : Augmented.
|
|
||||||
; English : Given a ring in which for all x, x * x = x, prove that for
|
|
||||||
; all x and y, x * y = y * x.
|
|
||||||
|
|
||||||
; Refs : [MOW76] McCharen et al. (1976), Problems and Experiments for a
|
|
||||||
; : [Ove90] Overbeek (1990), ATP competition announced at CADE-10
|
|
||||||
; : [Ove93] Overbeek (1993), The CADE-11 Competitions: A Personal
|
|
||||||
; : [LM93] Lusk & McCune (1993), Uniform Strategies: The CADE-11
|
|
||||||
; Source : [Ove90]
|
|
||||||
; Names : CADE-11 Competition 3 [Ove90]
|
|
||||||
; : THEOREM 3 [LM93]
|
|
||||||
|
|
||||||
; Status : unsatisfiable
|
|
||||||
; Rating : 0.67 v2.2.0, 0.71 v2.1.0, 0.75 v2.0.0
|
|
||||||
; Syntax : Number of clauses : 22 ( 0 non-Horn; 11 unit; 13 RR)
|
|
||||||
; Number of literals : 55 ( 2 equality)
|
|
||||||
; Maximal clause size : 5 ( 2 average)
|
|
||||||
; Number of predicates : 3 ( 0 propositional; 2-3 arity)
|
|
||||||
; Number of functors : 7 ( 4 constant; 0-2 arity)
|
|
||||||
; Number of variables : 74 ( 2 singleton)
|
|
||||||
; Maximal term depth : 2 ( 1 average)
|
|
||||||
|
|
||||||
; Comments : Supplies multiplication to identity as lemmas
|
|
||||||
; : tptp2X -f kif -t rm_equality:rstfp RNG008-6.p
|
|
||||||
;--------------------------------------------------------------------------
|
|
||||||
; additive_identity1, axiom.
|
|
||||||
(or (sum additive_identity ?A ?A))
|
|
||||||
|
|
||||||
; additive_identity2, axiom.
|
|
||||||
(or (sum ?A additive_identity ?A))
|
|
||||||
|
|
||||||
; closure_of_multiplication, axiom.
|
|
||||||
(or (product ?A ?B (multiply ?A ?B)))
|
|
||||||
|
|
||||||
; closure_of_addition, axiom.
|
|
||||||
(or (sum ?A ?B (add ?A ?B)))
|
|
||||||
|
|
||||||
; left_inverse, axiom.
|
|
||||||
(or (sum (additive_inverse ?A) ?A additive_identity))
|
|
||||||
|
|
||||||
; right_inverse, axiom.
|
|
||||||
(or (sum ?A (additive_inverse ?A) additive_identity))
|
|
||||||
|
|
||||||
; associativity_of_addition1, axiom.
|
|
||||||
(or (not (sum ?A ?B ?C))
|
|
||||||
(not (sum ?B ?D ?E))
|
|
||||||
(not (sum ?C ?D ?F))
|
|
||||||
(sum ?A ?E ?F))
|
|
||||||
|
|
||||||
; associativity_of_addition2, axiom.
|
|
||||||
(or (not (sum ?A ?B ?C))
|
|
||||||
(not (sum ?B ?D ?E))
|
|
||||||
(not (sum ?A ?E ?F))
|
|
||||||
(sum ?C ?D ?F))
|
|
||||||
|
|
||||||
; commutativity_of_addition, axiom.
|
|
||||||
(or (not (sum ?A ?B ?C))
|
|
||||||
(sum ?B ?A ?C))
|
|
||||||
|
|
||||||
; associativity_of_multiplication1, axiom.
|
|
||||||
(or (not (product ?A ?B ?C))
|
|
||||||
(not (product ?B ?D ?E))
|
|
||||||
(not (product ?C ?D ?F))
|
|
||||||
(product ?A ?E ?F))
|
|
||||||
|
|
||||||
; associativity_of_multiplication2, axiom.
|
|
||||||
(or (not (product ?A ?B ?C))
|
|
||||||
(not (product ?B ?D ?E))
|
|
||||||
(not (product ?A ?E ?F))
|
|
||||||
(product ?C ?D ?F))
|
|
||||||
|
|
||||||
; distributivity1, axiom.
|
|
||||||
(or (not (product ?A ?B ?C))
|
|
||||||
(not (product ?A ?D ?E))
|
|
||||||
(not (sum ?B ?D ?F))
|
|
||||||
(not (product ?A ?F ?G))
|
|
||||||
(sum ?C ?E ?G))
|
|
||||||
|
|
||||||
; distributivity2, axiom.
|
|
||||||
(or (not (product ?A ?B ?C))
|
|
||||||
(not (product ?A ?D ?E))
|
|
||||||
(not (sum ?B ?D ?F))
|
|
||||||
(not (sum ?C ?E ?G))
|
|
||||||
(product ?A ?F ?G))
|
|
||||||
|
|
||||||
; distributivity3, axiom.
|
|
||||||
(or (not (product ?A ?B ?C))
|
|
||||||
(not (product ?D ?B ?E))
|
|
||||||
(not (sum ?A ?D ?F))
|
|
||||||
(not (product ?F ?B ?G))
|
|
||||||
(sum ?C ?E ?G))
|
|
||||||
|
|
||||||
; distributivity4, axiom.
|
|
||||||
(or (not (product ?A ?B ?C))
|
|
||||||
(not (product ?D ?B ?E))
|
|
||||||
(not (sum ?A ?D ?F))
|
|
||||||
(not (sum ?C ?E ?G))
|
|
||||||
(product ?F ?B ?G))
|
|
||||||
|
|
||||||
; addition_is_well_defined, axiom.
|
|
||||||
(or (not (sum ?A ?B ?C))
|
|
||||||
(not (sum ?A ?B ?D))
|
|
||||||
(= ?C ?D))
|
|
||||||
|
|
||||||
; multiplication_is_well_defined, axiom.
|
|
||||||
(or (not (product ?A ?B ?C))
|
|
||||||
(not (product ?A ?B ?D))
|
|
||||||
(= ?C ?D))
|
|
||||||
|
|
||||||
; x_times_identity_x_is_identity, axiom.
|
|
||||||
(or (product ?A additive_identity additive_identity))
|
|
||||||
|
|
||||||
; identity_times_x_is_identity, axiom.
|
|
||||||
(or (product additive_identity ?A additive_identity))
|
|
||||||
|
|
||||||
; x_squared_is_x, hypothesis.
|
|
||||||
(or (product ?A ?A ?A))
|
|
||||||
|
|
||||||
; a_times_b_is_c, hypothesis.
|
|
||||||
(or (product a b c))
|
|
||||||
|
|
||||||
; prove_b_times_a_is_c, conjecture.
|
|
||||||
(or (not (product b a c)))
|
|
||||||
|
|
||||||
;--------------------------------------------------------------------------
|
|
|
@ -1,60 +0,0 @@
|
||||||
;--------------------------------------------------------------------------
|
|
||||||
; File : RNG009-5 : TPTP v2.2.0. Released v1.0.0.
|
|
||||||
; Domain : Ring Theory
|
|
||||||
; Problem : If X*X*X = X then the ring is commutative
|
|
||||||
; Version : [Peterson & Stickel,1981] (equality) axioms :
|
|
||||||
; Reduced > Incomplete.
|
|
||||||
; English : Given a ring in which for all x, x * x * x = x, prove that
|
|
||||||
; for all x and y, x * y = y * x.
|
|
||||||
|
|
||||||
; Refs : [PS81] Peterson & Stickel (1981), Complete Sets of Reductions
|
|
||||||
; : [Ove90] Overbeek (1990), ATP competition announced at CADE-10
|
|
||||||
; : [Ove93] Overbeek (1993), The CADE-11 Competitions: A Personal
|
|
||||||
; : [LM93] Lusk & McCune (1993), Uniform Strategies: The CADE-11
|
|
||||||
; : [Zha93] Zhang (1993), Automated Proofs of Equality Problems in
|
|
||||||
; Source : [Ove90]
|
|
||||||
; Names : CADE-11 Competition Eq-7 [Ove90]
|
|
||||||
; : THEOREM EQ-7 [LM93]
|
|
||||||
; : PROBLEM 7 [Zha93]
|
|
||||||
|
|
||||||
; Status : unsatisfiable
|
|
||||||
; Rating : 0.67 v2.2.0, 0.71 v2.1.0, 1.00 v2.0.0
|
|
||||||
; Syntax : Number of clauses : 9 ( 0 non-Horn; 9 unit; 1 RR)
|
|
||||||
; Number of literals : 9 ( 9 equality)
|
|
||||||
; Maximal clause size : 1 ( 1 average)
|
|
||||||
; Number of predicates : 1 ( 0 propositional; 2-2 arity)
|
|
||||||
; Number of functors : 6 ( 3 constant; 0-2 arity)
|
|
||||||
; Number of variables : 17 ( 0 singleton)
|
|
||||||
; Maximal term depth : 3 ( 2 average)
|
|
||||||
|
|
||||||
; Comments :
|
|
||||||
; : tptp2X -f kif -t rm_equality:rstfp RNG009-5.p
|
|
||||||
;--------------------------------------------------------------------------
|
|
||||||
; right_identity, axiom.
|
|
||||||
(or (= (add ?A additive_identity) ?A))
|
|
||||||
|
|
||||||
; right_additive_inverse, axiom.
|
|
||||||
(or (= (add ?A (additive_inverse ?A)) additive_identity))
|
|
||||||
|
|
||||||
; distribute1, axiom.
|
|
||||||
(or (= (multiply ?A (add ?B ?C)) (add (multiply ?A ?B) (multiply ?A ?C))))
|
|
||||||
|
|
||||||
; distribute2, axiom.
|
|
||||||
(or (= (multiply (add ?A ?B) ?C) (add (multiply ?A ?C) (multiply ?B ?C))))
|
|
||||||
|
|
||||||
; associative_addition, axiom.
|
|
||||||
(or (= (add (add ?A ?B) ?C) (add ?A (add ?B ?C))))
|
|
||||||
|
|
||||||
; commutative_addition, axiom.
|
|
||||||
(or (= (add ?A ?B) (add ?B ?A)))
|
|
||||||
|
|
||||||
; associative_multiplication, axiom.
|
|
||||||
(or (= (multiply (multiply ?A ?B) ?C) (multiply ?A (multiply ?B ?C))))
|
|
||||||
|
|
||||||
; x_cubed_is_x, hypothesis.
|
|
||||||
(or (= (multiply ?A (multiply ?A ?A)) ?A))
|
|
||||||
|
|
||||||
; prove_commutativity, conjecture.
|
|
||||||
(or (/= (multiply a b) (multiply b a)))
|
|
||||||
|
|
||||||
;--------------------------------------------------------------------------
|
|
|
@ -1,117 +0,0 @@
|
||||||
;--------------------------------------------------------------------------
|
|
||||||
; File : RNG010-5 : TPTP v2.2.0. Released v1.0.0.
|
|
||||||
; Domain : Ring Theory (Right alternative)
|
|
||||||
; Problem : Skew symmetry of the auxilliary function
|
|
||||||
; Version : [Ove90] (equality) axioms :
|
|
||||||
; Incomplete > Augmented > Incomplete.
|
|
||||||
; English : The three Moufang identities imply the skew symmetry
|
|
||||||
; of s(W,X,Y,Z) = (W*X,Y,Z) - X*(W,Y,Z) - (X,Y,Z)*W.
|
|
||||||
; Recall that skew symmetry means that the function sign
|
|
||||||
; changes when any two arguments are swapped. This problem
|
|
||||||
; proves the case for swapping the first two arguments.
|
|
||||||
|
|
||||||
; Refs : [Ove90] Overbeek (1990), ATP competition announced at CADE-10
|
|
||||||
; : [Ove93] Overbeek (1993), The CADE-11 Competitions: A Personal
|
|
||||||
; : [LM93] Lusk & McCune (1993), Uniform Strategies: The CADE-11
|
|
||||||
; : [Zha93] Zhang (1993), Automated Proofs of Equality Problems in
|
|
||||||
; Source : [Ove90]
|
|
||||||
; Names : CADE-11 Competition Eq-9 [Ove90]
|
|
||||||
; : THEOREM EQ-9 [LM93]
|
|
||||||
; : PROBLEM 9 [Zha93]
|
|
||||||
|
|
||||||
; Status : unknown
|
|
||||||
; Rating : 1.00 v2.0.0
|
|
||||||
; Syntax : Number of clauses : 27 ( 0 non-Horn; 27 unit; 2 RR)
|
|
||||||
; Number of literals : 27 ( 27 equality)
|
|
||||||
; Maximal clause size : 1 ( 1 average)
|
|
||||||
; Number of predicates : 1 ( 0 propositional; 2-2 arity)
|
|
||||||
; Number of functors : 11 ( 5 constant; 0-4 arity)
|
|
||||||
; Number of variables : 52 ( 2 singleton)
|
|
||||||
; Maximal term depth : 6 ( 2 average)
|
|
||||||
|
|
||||||
; Comments : I copied this directly. I think the Moufang identities may
|
|
||||||
; be wrong. At least they're in another form.
|
|
||||||
; : tptp2X -f kif -t rm_equality:rstfp RNG010-5.p
|
|
||||||
;--------------------------------------------------------------------------
|
|
||||||
; commutative_addition, axiom.
|
|
||||||
(or (= (add ?A ?B) (add ?B ?A)))
|
|
||||||
|
|
||||||
; associative_addition, axiom.
|
|
||||||
(or (= (add (add ?A ?B) ?C) (add ?A (add ?B ?C))))
|
|
||||||
|
|
||||||
; right_identity, axiom.
|
|
||||||
(or (= (add ?A additive_identity) ?A))
|
|
||||||
|
|
||||||
; left_identity, axiom.
|
|
||||||
(or (= (add additive_identity ?A) ?A))
|
|
||||||
|
|
||||||
; right_additive_inverse, axiom.
|
|
||||||
(or (= (add ?A (additive_inverse ?A)) additive_identity))
|
|
||||||
|
|
||||||
; left_additive_inverse, axiom.
|
|
||||||
(or (= (add (additive_inverse ?A) ?A) additive_identity))
|
|
||||||
|
|
||||||
; additive_inverse_identity, axiom.
|
|
||||||
(or (= (additive_inverse additive_identity) additive_identity))
|
|
||||||
|
|
||||||
; property_of_inverse_and_add, axiom.
|
|
||||||
(or (= (add ?A (add (additive_inverse ?A) ?B)) ?B))
|
|
||||||
|
|
||||||
; distribute_additive_inverse, axiom.
|
|
||||||
(or (= (additive_inverse (add ?A ?B)) (add (additive_inverse ?A) (additive_inverse ?B))))
|
|
||||||
|
|
||||||
; additive_inverse_additive_inverse, axiom.
|
|
||||||
(or (= (additive_inverse (additive_inverse ?A)) ?A))
|
|
||||||
|
|
||||||
; multiply_additive_id1, axiom.
|
|
||||||
(or (= (multiply ?A additive_identity) additive_identity))
|
|
||||||
|
|
||||||
; multiply_additive_id2, axiom.
|
|
||||||
(or (= (multiply additive_identity ?A) additive_identity))
|
|
||||||
|
|
||||||
; product_of_inverse, axiom.
|
|
||||||
(or (= (multiply (additive_inverse ?A) (additive_inverse ?B)) (multiply ?A ?B)))
|
|
||||||
|
|
||||||
; multiply_additive_inverse1, axiom.
|
|
||||||
(or (= (multiply ?A (additive_inverse ?B)) (additive_inverse (multiply ?A ?B))))
|
|
||||||
|
|
||||||
; multiply_additive_inverse2, axiom.
|
|
||||||
(or (= (multiply (additive_inverse ?A) ?B) (additive_inverse (multiply ?A ?B))))
|
|
||||||
|
|
||||||
; distribute1, axiom.
|
|
||||||
(or (= (multiply ?A (add ?B ?C)) (add (multiply ?A ?B) (multiply ?A ?C))))
|
|
||||||
|
|
||||||
; distribute2, axiom.
|
|
||||||
(or (= (multiply (add ?A ?B) ?C) (add (multiply ?A ?C) (multiply ?B ?C))))
|
|
||||||
|
|
||||||
; right_alternative, axiom.
|
|
||||||
(or (= (multiply (multiply ?A ?B) ?B) (multiply ?A (multiply ?B ?B))))
|
|
||||||
|
|
||||||
; associator, axiom.
|
|
||||||
(or (= (associator ?A ?B ?C) (add (multiply (multiply ?A ?B) ?C) (additive_inverse (multiply ?A (multiply ?B ?C))))))
|
|
||||||
|
|
||||||
; commutator, axiom.
|
|
||||||
(or (= (commutator ?A ?B) (add (multiply ?B ?A) (additive_inverse (multiply ?A ?B)))))
|
|
||||||
|
|
||||||
; middle_associator, axiom.
|
|
||||||
(or (= (multiply (multiply (associator ?A ?A ?B) ?A) (associator ?A ?A ?B)) additive_identity))
|
|
||||||
|
|
||||||
; left_alternative, axiom.
|
|
||||||
(or (= (multiply (multiply ?A ?A) ?B) (multiply ?A (multiply ?A ?B))))
|
|
||||||
|
|
||||||
; defines_s, axiom.
|
|
||||||
(or (= (s ?A ?B ?C ?D) (add (add (associator (multiply ?A ?B) ?C ?D) (additive_inverse (multiply ?B (associator ?A ?C ?D)))) (additive_inverse (multiply (associator ?B ?C ?D) ?A)))))
|
|
||||||
|
|
||||||
; right_moufang, hypothesis.
|
|
||||||
(or (= (multiply ?A (multiply ?B (multiply ?C ?B))) (multiply (commutator (multiply ?A ?B) ?C) ?B)))
|
|
||||||
|
|
||||||
; left_moufang, hypothesis.
|
|
||||||
(or (= (multiply (multiply ?A (multiply ?B ?A)) ?C) (multiply ?A (commutator ?B (multiply ?A ?C)))))
|
|
||||||
|
|
||||||
; middle_moufang, hypothesis.
|
|
||||||
(or (= (multiply (multiply ?A ?B) (multiply ?C ?A)) (multiply (multiply ?A (multiply ?B ?C)) ?A)))
|
|
||||||
|
|
||||||
; prove_skew_symmetry, conjecture.
|
|
||||||
(or (/= (s a b c d) (additive_inverse (s b a c d))))
|
|
||||||
|
|
||||||
;--------------------------------------------------------------------------
|
|
|
@ -1,97 +0,0 @@
|
||||||
;--------------------------------------------------------------------------
|
|
||||||
; File : RNG011-5 : TPTP v2.2.0. Released v1.0.0.
|
|
||||||
; Domain : Ring Theory
|
|
||||||
; Problem : In a right alternative ring (((X,X,Y)*X)*(X,X,Y)) = Add Id
|
|
||||||
; Version : [Ove90] (equality) axioms :
|
|
||||||
; Incomplete > Augmented > Incomplete.
|
|
||||||
; English :
|
|
||||||
|
|
||||||
; Refs : [Ove90] Overbeek (1990), ATP competition announced at CADE-10
|
|
||||||
; : [Ove93] Overbeek (1993), The CADE-11 Competitions: A Personal
|
|
||||||
; : [LM93] Lusk & McCune (1993), Uniform Strategies: The CADE-11
|
|
||||||
; : [Zha93] Zhang (1993), Automated Proofs of Equality Problems in
|
|
||||||
; Source : [Ove90]
|
|
||||||
; Names : CADE-11 Competition Eq-10 [Ove90]
|
|
||||||
; : THEOREM EQ-10 [LM93]
|
|
||||||
; : PROBLEM 10 [Zha93]
|
|
||||||
|
|
||||||
; Status : unsatisfiable
|
|
||||||
; Rating : 0.00 v2.0.0
|
|
||||||
; Syntax : Number of clauses : 22 ( 0 non-Horn; 22 unit; 2 RR)
|
|
||||||
; Number of literals : 22 ( 22 equality)
|
|
||||||
; Maximal clause size : 1 ( 1 average)
|
|
||||||
; Number of predicates : 1 ( 0 propositional; 2-2 arity)
|
|
||||||
; Number of functors : 8 ( 3 constant; 0-3 arity)
|
|
||||||
; Number of variables : 37 ( 2 singleton)
|
|
||||||
; Maximal term depth : 5 ( 2 average)
|
|
||||||
|
|
||||||
; Comments :
|
|
||||||
; : tptp2X -f kif -t rm_equality:rstfp RNG011-5.p
|
|
||||||
;--------------------------------------------------------------------------
|
|
||||||
; commutative_addition, axiom.
|
|
||||||
(or (= (add ?A ?B) (add ?B ?A)))
|
|
||||||
|
|
||||||
; associative_addition, axiom.
|
|
||||||
(or (= (add (add ?A ?B) ?C) (add ?A (add ?B ?C))))
|
|
||||||
|
|
||||||
; right_identity, axiom.
|
|
||||||
(or (= (add ?A additive_identity) ?A))
|
|
||||||
|
|
||||||
; left_identity, axiom.
|
|
||||||
(or (= (add additive_identity ?A) ?A))
|
|
||||||
|
|
||||||
; right_additive_inverse, axiom.
|
|
||||||
(or (= (add ?A (additive_inverse ?A)) additive_identity))
|
|
||||||
|
|
||||||
; left_additive_inverse, axiom.
|
|
||||||
(or (= (add (additive_inverse ?A) ?A) additive_identity))
|
|
||||||
|
|
||||||
; additive_inverse_identity, axiom.
|
|
||||||
(or (= (additive_inverse additive_identity) additive_identity))
|
|
||||||
|
|
||||||
; property_of_inverse_and_add, axiom.
|
|
||||||
(or (= (add ?A (add (additive_inverse ?A) ?B)) ?B))
|
|
||||||
|
|
||||||
; distribute_additive_inverse, axiom.
|
|
||||||
(or (= (additive_inverse (add ?A ?B)) (add (additive_inverse ?A) (additive_inverse ?B))))
|
|
||||||
|
|
||||||
; additive_inverse_additive_inverse, axiom.
|
|
||||||
(or (= (additive_inverse (additive_inverse ?A)) ?A))
|
|
||||||
|
|
||||||
; multiply_additive_id1, axiom.
|
|
||||||
(or (= (multiply ?A additive_identity) additive_identity))
|
|
||||||
|
|
||||||
; multiply_additive_id2, axiom.
|
|
||||||
(or (= (multiply additive_identity ?A) additive_identity))
|
|
||||||
|
|
||||||
; product_of_inverse, axiom.
|
|
||||||
(or (= (multiply (additive_inverse ?A) (additive_inverse ?B)) (multiply ?A ?B)))
|
|
||||||
|
|
||||||
; multiply_additive_inverse1, axiom.
|
|
||||||
(or (= (multiply ?A (additive_inverse ?B)) (additive_inverse (multiply ?A ?B))))
|
|
||||||
|
|
||||||
; multiply_additive_inverse2, axiom.
|
|
||||||
(or (= (multiply (additive_inverse ?A) ?B) (additive_inverse (multiply ?A ?B))))
|
|
||||||
|
|
||||||
; distribute1, axiom.
|
|
||||||
(or (= (multiply ?A (add ?B ?C)) (add (multiply ?A ?B) (multiply ?A ?C))))
|
|
||||||
|
|
||||||
; distribute2, axiom.
|
|
||||||
(or (= (multiply (add ?A ?B) ?C) (add (multiply ?A ?C) (multiply ?B ?C))))
|
|
||||||
|
|
||||||
; right_alternative, axiom.
|
|
||||||
(or (= (multiply (multiply ?A ?B) ?B) (multiply ?A (multiply ?B ?B))))
|
|
||||||
|
|
||||||
; associator, axiom.
|
|
||||||
(or (= (associator ?A ?B ?C) (add (multiply (multiply ?A ?B) ?C) (additive_inverse (multiply ?A (multiply ?B ?C))))))
|
|
||||||
|
|
||||||
; commutator, axiom.
|
|
||||||
(or (= (commutator ?A ?B) (add (multiply ?B ?A) (additive_inverse (multiply ?A ?B)))))
|
|
||||||
|
|
||||||
; middle_associator, axiom.
|
|
||||||
(or (= (multiply (multiply (associator ?A ?A ?B) ?A) (associator ?A ?A ?B)) additive_identity))
|
|
||||||
|
|
||||||
; prove_equality, conjecture.
|
|
||||||
(or (/= (multiply (multiply (associator a a b) a) (associator a a b)) additive_identity))
|
|
||||||
|
|
||||||
;--------------------------------------------------------------------------
|
|
|
@ -1,53 +0,0 @@
|
||||||
;--------------------------------------------------------------------------
|
|
||||||
; File : ROB005-1 : TPTP v2.2.0. Released v1.0.0.
|
|
||||||
; Domain : Robbins Algebra
|
|
||||||
; Problem : c + c=c => Boolean
|
|
||||||
; Version : [Win90] (equality) axioms.
|
|
||||||
; English : If there is an element c such that c+c=c, then the algebra
|
|
||||||
; is Boolean.
|
|
||||||
|
|
||||||
; Refs : [HMT71] Henkin et al. (1971), Cylindrical Algebras
|
|
||||||
; : [Win90] Winker (1990), Robbins Algebra: Conditions that make a
|
|
||||||
; : [Ove90] Overbeek (1990), ATP competition announced at CADE-10
|
|
||||||
; : [LW92] Lusk & Wos (1992), Benchmark Problems in Which Equalit
|
|
||||||
; : [Ove93] Overbeek (1993), The CADE-11 Competitions: A Personal
|
|
||||||
; : [LM93] Lusk & McCune (1993), Uniform Strategies: The CADE-11
|
|
||||||
; : [Zha93] Zhang (1993), Automated Proofs of Equality Problems in
|
|
||||||
; Source : [Ove90]
|
|
||||||
; Names : CADE-11 Competition Eq-2 [Ove90]
|
|
||||||
; : Lemma 2.4 [Win90]
|
|
||||||
; : RA3 [LW92]
|
|
||||||
; : THEOREM EQ-2 [LM93]
|
|
||||||
; : PROBLEM 2 [Zha93]
|
|
||||||
; : robbins.occ.in [OTTER]
|
|
||||||
|
|
||||||
; Status : unsatisfiable
|
|
||||||
; Rating : 0.67 v2.2.0, 0.71 v2.1.0, 0.88 v2.0.0
|
|
||||||
; Syntax : Number of clauses : 5 ( 0 non-Horn; 5 unit; 2 RR)
|
|
||||||
; Number of literals : 5 ( 5 equality)
|
|
||||||
; Maximal clause size : 1 ( 1 average)
|
|
||||||
; Number of predicates : 1 ( 0 propositional; 2-2 arity)
|
|
||||||
; Number of functors : 5 ( 3 constant; 0-2 arity)
|
|
||||||
; Number of variables : 7 ( 0 singleton)
|
|
||||||
; Maximal term depth : 6 ( 2 average)
|
|
||||||
|
|
||||||
; Comments : Commutativity, associativity, and Huntington's axiom
|
|
||||||
; axiomatize Boolean algebra.
|
|
||||||
; : tptp2X -f kif -t rm_equality:rstfp ROB005-1.p
|
|
||||||
;--------------------------------------------------------------------------
|
|
||||||
; commutativity_of_add, axiom.
|
|
||||||
(or (= (add ?A ?B) (add ?B ?A)))
|
|
||||||
|
|
||||||
; associativity_of_add, axiom.
|
|
||||||
(or (= (add (add ?A ?B) ?C) (add ?A (add ?B ?C))))
|
|
||||||
|
|
||||||
; robbins_axiom, axiom.
|
|
||||||
(or (= (negate (add (negate (add ?A ?B)) (negate (add ?A (negate ?B))))) ?A))
|
|
||||||
|
|
||||||
; idempotence, hypothesis.
|
|
||||||
(or (= (add c c) c))
|
|
||||||
|
|
||||||
; prove_huntingtons_axiom, conjecture.
|
|
||||||
(or (/= (add (negate (add a (negate b))) (negate (add (negate a) (negate b)))) b))
|
|
||||||
|
|
||||||
;--------------------------------------------------------------------------
|
|
Binary file not shown.
|
@ -1,362 +0,0 @@
|
||||||
;;; -*- Mode: Lisp; Syntax: Common-Lisp; Package: snark-user -*-
|
|
||||||
;;; File: coder-examples.lisp
|
|
||||||
;;; The contents of this file are subject to the Mozilla Public License
|
|
||||||
;;; Version 1.1 (the "License"); you may not use this file except in
|
|
||||||
;;; compliance with the License. You may obtain a copy of the License at
|
|
||||||
;;; http://www.mozilla.org/MPL/
|
|
||||||
;;;
|
|
||||||
;;; Software distributed under the License is distributed on an "AS IS"
|
|
||||||
;;; basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the
|
|
||||||
;;; License for the specific language governing rights and limitations
|
|
||||||
;;; under the License.
|
|
||||||
;;;
|
|
||||||
;;; The Original Code is SNARK.
|
|
||||||
;;; The Initial Developer of the Original Code is SRI International.
|
|
||||||
;;; Portions created by the Initial Developer are Copyright (C) 1981-2004.
|
|
||||||
;;; All Rights Reserved.
|
|
||||||
;;;
|
|
||||||
;;; Contributor(s): Mark E. Stickel <stickel@ai.sri.com>.
|
|
||||||
|
|
||||||
(in-package :snark-user)
|
|
||||||
|
|
||||||
(defun coder-test ()
|
|
||||||
(time (coder-overbeek6))
|
|
||||||
(time (coder-ycl-rst))
|
|
||||||
(time (coder-ycl-rst-together))
|
|
||||||
(time (coder-veroff-5-2))
|
|
||||||
(time (coder-veroff-4-1 :all-proofs t))
|
|
||||||
(time (coder-ex7b))
|
|
||||||
(time (coder-ex9 :max-syms 18 :max-vars 2))
|
|
||||||
nil)
|
|
||||||
|
|
||||||
(defun coder-xcb-reflex (&rest options)
|
|
||||||
;; 10-step proof
|
|
||||||
;; 11-step proof by (coder-xcb-reflex :max-syms 35)
|
|
||||||
;; 13-step proof by (coder-xcb-reflex :max-syms 31)
|
|
||||||
(apply
|
|
||||||
'coder
|
|
||||||
'((e ?x (e (e (e ?x ?y) (e ?z ?y)) ?z)))
|
|
||||||
'(e a a)
|
|
||||||
options))
|
|
||||||
|
|
||||||
(defun coder-overbeek6 (&rest options)
|
|
||||||
;; 5-step proof
|
|
||||||
(apply
|
|
||||||
'coder
|
|
||||||
'("i(a,i(b,a))" ;Prolog style with declared variables
|
|
||||||
"i(i(X,Y),i(i(Y,?z),i(X,?z)))" ;Prolog style with explicit variables (capitalized-or ?-prefix)
|
|
||||||
(i (i (i a b) b) (i (i b a) a)) ;Lisp style with declared variables
|
|
||||||
(i (i (n ?x) (n ?y)) (i ?y ?x))) ;Lisp style with explicit variables
|
|
||||||
"i(i(a,b),i(i(c,a),i(c,b)))" ;variable declarations don't apply to target
|
|
||||||
:variables '(a b c)
|
|
||||||
options))
|
|
||||||
|
|
||||||
(defun coder-overbeek4 (&rest options)
|
|
||||||
;; 10-step proof
|
|
||||||
(apply
|
|
||||||
'coder
|
|
||||||
'((e ?x (e (e ?y (e ?z ?x)) (e ?z ?y))))
|
|
||||||
'(e (e (e a (e b c)) c) (e b a))
|
|
||||||
options))
|
|
||||||
|
|
||||||
(defun coder-ycl-rst (&rest options)
|
|
||||||
;; prove reflexivity (4-step proof),
|
|
||||||
;; symmetry (5-step proof),
|
|
||||||
;; and transitivity (6-step proof) from ycl
|
|
||||||
;; coder searches until all have been found
|
|
||||||
(apply
|
|
||||||
'coder
|
|
||||||
'((e (e ?x ?y) (e (e ?z ?y) (e ?x ?z))))
|
|
||||||
'(and
|
|
||||||
(e a a)
|
|
||||||
(e (e a b) (e b a))
|
|
||||||
(e (e a b) (e (e b c) (e a c))))
|
|
||||||
options))
|
|
||||||
|
|
||||||
(defun coder-ycl-rst-together (&rest options)
|
|
||||||
;; prove reflexivity, symmetry, and transitivity from ycl in a single derivation
|
|
||||||
;; 9-step proof
|
|
||||||
(apply
|
|
||||||
'coder
|
|
||||||
'((e (e ?x ?y) (e (e ?z ?y) (e ?x ?z))))
|
|
||||||
'(together
|
|
||||||
(e a a)
|
|
||||||
(e (e a b) (e b a))
|
|
||||||
(e (e a b) (e (e b c) (e a c))))
|
|
||||||
options))
|
|
||||||
|
|
||||||
(defun coder-veroff-5-2 (&rest options)
|
|
||||||
;; problem from
|
|
||||||
;; Robert Veroff, "Finding Shortest Proofs: An Application of Linked Inference Rules",
|
|
||||||
;; JAR 27,2 (August 2001), 123-129
|
|
||||||
;; 8-step proof
|
|
||||||
(apply
|
|
||||||
'coder
|
|
||||||
'((i ?x (i ?y ?x))
|
|
||||||
(i (i ?x (i ?y ?z)) (i (i ?x ?y) (i ?x ?z))))
|
|
||||||
'(i (i a (i b c)) (i b (i a c)))
|
|
||||||
options))
|
|
||||||
|
|
||||||
(defun coder-veroff-4-1 (&rest options)
|
|
||||||
;; converse (because there's a typo) of problem from
|
|
||||||
;; Robert Veroff, "Finding Shortest Proofs: An Application of Linked Inference Rules",
|
|
||||||
;; JAR 27,2 (August 2001), 123-129
|
|
||||||
;; 7 6-step proofs, just like Veroff reported
|
|
||||||
(apply
|
|
||||||
'coder
|
|
||||||
'((i (i (i ?v1 ?v2) ?v3) (i (i ?v2 (i ?v3 ?v5)) (i ?v4 (i ?v2 ?v5)))))
|
|
||||||
'(i (i v2 (i v3 v5)) (i (i (i v1 v2) v3) (i v4 (i v2 v5))))
|
|
||||||
options))
|
|
||||||
|
|
||||||
(defun ii-schema ()
|
|
||||||
'(i ?x (i ?y ?x)))
|
|
||||||
|
|
||||||
(defun id-schema ()
|
|
||||||
'(i (i ?x (i ?y ?z)) (i (i ?x ?y) (i ?x ?z))))
|
|
||||||
|
|
||||||
(defun cr-schema1 ()
|
|
||||||
'(i (i ?x (n ?y)) (i (i ?x ?y) (n ?x))))
|
|
||||||
|
|
||||||
(defun cr-schema2 ()
|
|
||||||
'(i (i (n ?x) (n ?y)) (i (i (n ?x) ?y) ?x)))
|
|
||||||
|
|
||||||
(defun eq-schema1 ()
|
|
||||||
'(i (e ?x ?y) (i ?x ?y)))
|
|
||||||
|
|
||||||
(defun eq-schema2 ()
|
|
||||||
'(i (e ?x ?y) (i ?y ?x)))
|
|
||||||
|
|
||||||
(defun eq-schema3 ()
|
|
||||||
'(i (i ?x ?y) (i (i ?y ?x) (e ?y ?x))))
|
|
||||||
|
|
||||||
(defun or-schema ()
|
|
||||||
'(e (o ?x ?y) (i (n ?x) ?y)))
|
|
||||||
|
|
||||||
(defun and-schema ()
|
|
||||||
'(e (a ?x ?y) (n (o (n ?x) (n ?y)))))
|
|
||||||
|
|
||||||
(defun alt-and-schema ()
|
|
||||||
'(e (a ?x ?y) (n (i ?x (n ?y)))))
|
|
||||||
|
|
||||||
(defun coder-ex1 (&rest options)
|
|
||||||
;; from Genesereth chapter 4
|
|
||||||
;; 3-step proof
|
|
||||||
(apply
|
|
||||||
'coder
|
|
||||||
(list (ii-schema)
|
|
||||||
(id-schema)
|
|
||||||
'(i p q)
|
|
||||||
'(i q r))
|
|
||||||
'(i p r)
|
|
||||||
options))
|
|
||||||
|
|
||||||
(defun coder-ex2 (&rest options)
|
|
||||||
;; from Genesereth chapter 4 exercise
|
|
||||||
;; 6-step proof
|
|
||||||
(apply
|
|
||||||
'coder
|
|
||||||
(list (ii-schema)
|
|
||||||
(id-schema)
|
|
||||||
(cr-schema1)
|
|
||||||
(cr-schema2)
|
|
||||||
'(i p q)
|
|
||||||
'(i q r))
|
|
||||||
'(i (i p (n r)) (n p))
|
|
||||||
options))
|
|
||||||
|
|
||||||
(defun coder-ex3 (&rest options)
|
|
||||||
;; from Genesereth chapter 4 exercise
|
|
||||||
;; 5-step proof
|
|
||||||
(apply
|
|
||||||
'coder
|
|
||||||
(list (ii-schema)
|
|
||||||
(id-schema)
|
|
||||||
(cr-schema1)
|
|
||||||
(cr-schema2)
|
|
||||||
'(n (n p)))
|
|
||||||
'p
|
|
||||||
options))
|
|
||||||
|
|
||||||
(defun coder-ex4 (&rest options)
|
|
||||||
;; 5-step proof
|
|
||||||
(apply
|
|
||||||
'coder
|
|
||||||
(list (ii-schema)
|
|
||||||
(id-schema)
|
|
||||||
(cr-schema1)
|
|
||||||
(cr-schema2)
|
|
||||||
'p)
|
|
||||||
'(n (n p))
|
|
||||||
options))
|
|
||||||
|
|
||||||
(defun coder-ex5 (&rest options)
|
|
||||||
;; 4-step proof
|
|
||||||
(apply
|
|
||||||
'coder
|
|
||||||
(list (ii-schema)
|
|
||||||
(id-schema)
|
|
||||||
(cr-schema1)
|
|
||||||
(cr-schema2)
|
|
||||||
(eq-schema1)
|
|
||||||
(eq-schema2)
|
|
||||||
(eq-schema3))
|
|
||||||
'(e p p)
|
|
||||||
options))
|
|
||||||
|
|
||||||
(defun coder-ex6 (&rest options)
|
|
||||||
;; 4-step proof
|
|
||||||
(apply
|
|
||||||
'coder
|
|
||||||
(list (ii-schema)
|
|
||||||
(id-schema)
|
|
||||||
(cr-schema1)
|
|
||||||
(cr-schema2)
|
|
||||||
(eq-schema1)
|
|
||||||
(eq-schema2)
|
|
||||||
(eq-schema3)
|
|
||||||
'(e p q))
|
|
||||||
'(e q p)
|
|
||||||
options))
|
|
||||||
|
|
||||||
(defun coder-ex6a (&rest options)
|
|
||||||
;; 5-step proof
|
|
||||||
(apply
|
|
||||||
'coder
|
|
||||||
(list (ii-schema)
|
|
||||||
(id-schema)
|
|
||||||
(cr-schema1)
|
|
||||||
(cr-schema2)
|
|
||||||
(eq-schema1)
|
|
||||||
(eq-schema2)
|
|
||||||
(eq-schema3))
|
|
||||||
'(i (e p q) (e q p))
|
|
||||||
options))
|
|
||||||
|
|
||||||
(defun coder-ex6b (&rest options)
|
|
||||||
;; 7-step proof
|
|
||||||
(apply
|
|
||||||
'coder
|
|
||||||
(list (ii-schema)
|
|
||||||
(id-schema)
|
|
||||||
(cr-schema1)
|
|
||||||
(cr-schema2)
|
|
||||||
(eq-schema1)
|
|
||||||
(eq-schema2)
|
|
||||||
(eq-schema3))
|
|
||||||
'(e (e p q) (e q p))
|
|
||||||
options))
|
|
||||||
|
|
||||||
(defun coder-ex7a ()
|
|
||||||
;; 5-step proof, 5-step proof, 2-step proof
|
|
||||||
(coder (list (ii-schema)
|
|
||||||
(id-schema)
|
|
||||||
(eq-schema1)
|
|
||||||
(eq-schema2)
|
|
||||||
(eq-schema3)
|
|
||||||
'(e p q)
|
|
||||||
'(e q r))
|
|
||||||
'(i p r)
|
|
||||||
:must-use '(6 7))
|
|
||||||
(coder (list (ii-schema)
|
|
||||||
(id-schema)
|
|
||||||
(eq-schema1)
|
|
||||||
(eq-schema2)
|
|
||||||
(eq-schema3)
|
|
||||||
'(e p q)
|
|
||||||
'(e q r))
|
|
||||||
'(i r p)
|
|
||||||
:must-use '(6 7))
|
|
||||||
(coder (list (ii-schema)
|
|
||||||
(id-schema)
|
|
||||||
(eq-schema1)
|
|
||||||
(eq-schema2)
|
|
||||||
(eq-schema3)
|
|
||||||
'(i p r)
|
|
||||||
'(i r p))
|
|
||||||
'(e p r)
|
|
||||||
:must-use '(6 7)))
|
|
||||||
|
|
||||||
(defun coder-ex7b ()
|
|
||||||
;; 12-step proof
|
|
||||||
(coder (list (ii-schema)
|
|
||||||
(id-schema)
|
|
||||||
(eq-schema1)
|
|
||||||
(eq-schema2)
|
|
||||||
(eq-schema3)
|
|
||||||
'(e p q)
|
|
||||||
'(e q r))
|
|
||||||
'(together (e p r) (i p q) (i q r) (i p r) (i r q) (i q p) (i r p))
|
|
||||||
:must-use t
|
|
||||||
:max-syms 7))
|
|
||||||
|
|
||||||
(defun coder-ex8 (&rest options)
|
|
||||||
;; 3-step proof
|
|
||||||
(apply
|
|
||||||
'coder
|
|
||||||
(list (ii-schema)
|
|
||||||
(id-schema)
|
|
||||||
(cr-schema1)
|
|
||||||
(cr-schema2)
|
|
||||||
(eq-schema1)
|
|
||||||
(eq-schema2)
|
|
||||||
(eq-schema3)
|
|
||||||
(or-schema)
|
|
||||||
'q)
|
|
||||||
'(o p q)
|
|
||||||
options))
|
|
||||||
|
|
||||||
(defun coder-ex9 (&rest options)
|
|
||||||
;; no 1,...,8-step proof
|
|
||||||
;; 9-step proof by (coder-ex9 :max-syms 18 :max-vars 2)
|
|
||||||
(apply
|
|
||||||
'coder
|
|
||||||
(list (ii-schema)
|
|
||||||
(id-schema)
|
|
||||||
(cr-schema1)
|
|
||||||
(cr-schema2)
|
|
||||||
(eq-schema1)
|
|
||||||
(eq-schema2)
|
|
||||||
(eq-schema3)
|
|
||||||
(or-schema)
|
|
||||||
'p)
|
|
||||||
'(o p q)
|
|
||||||
options))
|
|
||||||
|
|
||||||
(defun coder-ex10 (&rest options)
|
|
||||||
;; no 1,...,8-step proof
|
|
||||||
;; 13-step proof by (coder-ex10 :max-syms 18 :max-vars 2 :must-use '(1 2 3 4 5 6 8 9 10 11))
|
|
||||||
(apply
|
|
||||||
'coder
|
|
||||||
(list (ii-schema)
|
|
||||||
(id-schema)
|
|
||||||
(cr-schema1)
|
|
||||||
(cr-schema2)
|
|
||||||
(eq-schema1)
|
|
||||||
(eq-schema2)
|
|
||||||
(eq-schema3)
|
|
||||||
(or-schema)
|
|
||||||
(and-schema)
|
|
||||||
'p
|
|
||||||
'q)
|
|
||||||
'(a p q)
|
|
||||||
options))
|
|
||||||
|
|
||||||
(defun coder-ex11 (&rest options)
|
|
||||||
;; no 1,...,8-step proof
|
|
||||||
;; 9-step proof by (coder-ex11 :max-syms 16 :max-vars 2)
|
|
||||||
(apply
|
|
||||||
'coder
|
|
||||||
(list (ii-schema)
|
|
||||||
(id-schema)
|
|
||||||
(cr-schema1)
|
|
||||||
(cr-schema2)
|
|
||||||
(eq-schema1)
|
|
||||||
(eq-schema2)
|
|
||||||
(eq-schema3)
|
|
||||||
(alt-and-schema)
|
|
||||||
'p
|
|
||||||
'q)
|
|
||||||
'(a p q)
|
|
||||||
options))
|
|
||||||
|
|
||||||
;;; coder-examples.lisp EOF
|
|
Binary file not shown.
|
@ -1,82 +0,0 @@
|
||||||
;;; -*- Mode: Lisp; Syntax: Common-Lisp; Package: snark-user -*-
|
|
||||||
;;; File: front-last-example.lisp
|
|
||||||
;;; The contents of this file are subject to the Mozilla Public License
|
|
||||||
;;; Version 1.1 (the "License"); you may not use this file except in
|
|
||||||
;;; compliance with the License. You may obtain a copy of the License at
|
|
||||||
;;; http://www.mozilla.org/MPL/
|
|
||||||
;;;
|
|
||||||
;;; Software distributed under the License is distributed on an "AS IS"
|
|
||||||
;;; basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the
|
|
||||||
;;; License for the specific language governing rights and limitations
|
|
||||||
;;; under the License.
|
|
||||||
;;;
|
|
||||||
;;; The Original Code is SNARK.
|
|
||||||
;;; The Initial Developer of the Original Code is SRI International.
|
|
||||||
;;; Portions created by the Initial Developer are Copyright (C) 1981-2002.
|
|
||||||
;;; All Rights Reserved.
|
|
||||||
;;;
|
|
||||||
;;; Contributor(s): Mark E. Stickel <stickel@ai.sri.com>.
|
|
||||||
|
|
||||||
(in-package :snark-user)
|
|
||||||
|
|
||||||
;;; Let L be a nonempty list.
|
|
||||||
;;; Synthesize a program to compute the FRONT and LAST
|
|
||||||
;;; of the list where LAST of a list is its last element
|
|
||||||
;;; and FRONT is the list of all elements except the last.
|
|
||||||
;;;
|
|
||||||
;;; The program specification is
|
|
||||||
;;; (EXISTS (Y Z) (= L (APPEND Y (CONS Z NIL))))
|
|
||||||
;;; i.e., find Y and Z such that L can be formed by
|
|
||||||
;;; appending Y (the FRONT of L) and a single element list
|
|
||||||
;;; containing Z (the LAST of L).
|
|
||||||
;;;
|
|
||||||
;;; The appropriate inductive axiom is given explicitly in the axiom
|
|
||||||
;;; named induction.
|
|
||||||
;;;
|
|
||||||
;;; Necessary properties of APPEND, CONS, HEAD, and TAIL are given
|
|
||||||
;;; in the axioms named append-nil, append-cons, and cons-definition.
|
|
||||||
;;;
|
|
||||||
;;; A proof of the query is found and the program
|
|
||||||
;;; defined by the values found for variables Y and Z
|
|
||||||
;;; in the specification.
|
|
||||||
;;;
|
|
||||||
;;; Resolution and paramodulation (for equality) are the inference
|
|
||||||
;;; rules used.
|
|
||||||
|
|
||||||
(defun front-last-example ()
|
|
||||||
;; Waldinger program synthesis example 1989-12-14
|
|
||||||
(initialize)
|
|
||||||
(use-resolution)
|
|
||||||
(use-paramodulation)
|
|
||||||
(use-literal-ordering-with-resolution 'literal-ordering-p)
|
|
||||||
(use-literal-ordering-with-paramodulation 'literal-ordering-p)
|
|
||||||
(use-conditional-answer-creation)
|
|
||||||
(declare-constant 'nil)
|
|
||||||
(declare-constant 'l)
|
|
||||||
(declare-function 'head 1)
|
|
||||||
(declare-function 'tail 1)
|
|
||||||
(declare-function 'cons 2)
|
|
||||||
(declare-function 'append 2)
|
|
||||||
(declare-function 'front 1)
|
|
||||||
(declare-function 'last 1)
|
|
||||||
(declare-ordering-greaterp 'l 'nil)
|
|
||||||
(declare-ordering-greaterp 'head 'l)
|
|
||||||
(declare-ordering-greaterp 'tail 'l)
|
|
||||||
(declare-ordering-greaterp 'cons 'head)
|
|
||||||
(declare-ordering-greaterp 'cons 'tail)
|
|
||||||
(declare-ordering-greaterp 'append 'cons)
|
|
||||||
;;(assert '(forall (x) (= x x)))
|
|
||||||
(assert '(/= l nil)
|
|
||||||
:name 'l-nonempty)
|
|
||||||
(assert '(implies (and (/= l nil) (/= (tail l) nil))
|
|
||||||
(= (tail l) (append (front (tail l)) (cons (last (tail l)) nil))))
|
|
||||||
:name 'induction)
|
|
||||||
(assert '(forall (u) (= (append nil u) u))
|
|
||||||
:name 'append-nil)
|
|
||||||
(assert '(forall (u v w) (= (append (cons u v) w) (cons u (append v w))))
|
|
||||||
:name 'append-cons)
|
|
||||||
(assert '(forall (x) (implied-by (= x (cons (head x) (tail x))) (/= x nil)))
|
|
||||||
:name 'cons-definition)
|
|
||||||
(prove '(= l (append ?y (cons ?z nil))) :answer '(values ?y ?z)))
|
|
||||||
|
|
||||||
;;; front-last-example.lisp EOF
|
|
Binary file not shown.
|
@ -1,130 +0,0 @@
|
||||||
;;; -*- Mode: Lisp; Syntax: Common-Lisp; Package: snark-user -*-
|
|
||||||
;;; File: hot-drink-example.lisp
|
|
||||||
;;; The contents of this file are subject to the Mozilla Public License
|
|
||||||
;;; Version 1.1 (the "License"); you may not use this file except in
|
|
||||||
;;; compliance with the License. You may obtain a copy of the License at
|
|
||||||
;;; http://www.mozilla.org/MPL/
|
|
||||||
;;;
|
|
||||||
;;; Software distributed under the License is distributed on an "AS IS"
|
|
||||||
;;; basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the
|
|
||||||
;;; License for the specific language governing rights and limitations
|
|
||||||
;;; under the License.
|
|
||||||
;;;
|
|
||||||
;;; The Original Code is SNARK.
|
|
||||||
;;; The Initial Developer of the Original Code is SRI International.
|
|
||||||
;;; Portions created by the Initial Developer are Copyright (C) 1981-2005.
|
|
||||||
;;; All Rights Reserved.
|
|
||||||
;;;
|
|
||||||
;;; Contributor(s): Mark E. Stickel <stickel@ai.sri.com>.
|
|
||||||
|
|
||||||
(in-package :snark-user)
|
|
||||||
|
|
||||||
;;; this is a simple example of one way of implementing partitions in SNARK
|
|
||||||
;;; rows are annotated with the partitions they're in and inferences are
|
|
||||||
;;; restricted to rows in the same partitions
|
|
||||||
;;;
|
|
||||||
;;; a partition communication table is used to augment the annotation
|
|
||||||
;;; of derived rows in case the row should be included in a neighboring
|
|
||||||
;;; partition too
|
|
||||||
;;;
|
|
||||||
;;; the partition communication table computation is invoked by including
|
|
||||||
;;; it as a pruning test
|
|
||||||
;;;
|
|
||||||
;;; this code is more illustrative than definitive
|
|
||||||
|
|
||||||
;;; partition communication table is a set of triples
|
|
||||||
;;; (from-partition to-partition relation-names) like
|
|
||||||
;;; (1 2 (water))
|
|
||||||
;;; (2 3 (steam))
|
|
||||||
|
|
||||||
(defun row-predicate-names (row)
|
|
||||||
(row-relation-names row))
|
|
||||||
|
|
||||||
(defun row-relation-names (row)
|
|
||||||
;; returns list of relation names in formula part
|
|
||||||
;; (but not answer, constraint, etc. parts) of a row
|
|
||||||
(let ((names nil))
|
|
||||||
(prog->
|
|
||||||
(snark::map-atoms-in-wff (row-wff row) ->* atom polarity)
|
|
||||||
(declare (ignore polarity))
|
|
||||||
(dereference
|
|
||||||
atom nil
|
|
||||||
:if-constant (pushnew (constant-name atom) names)
|
|
||||||
:if-compound (pushnew (function-name (head atom)) names)))
|
|
||||||
names))
|
|
||||||
|
|
||||||
(defun partition-communication (row)
|
|
||||||
;; could try to refine the context for added partitions
|
|
||||||
(when (use-partitions?)
|
|
||||||
(let ((table (partition-communication-table?))
|
|
||||||
(preds (row-relation-names row))
|
|
||||||
(context (snark::row-context row))
|
|
||||||
(more-context nil))
|
|
||||||
(flet ((message-passing-from (x)
|
|
||||||
(prog->
|
|
||||||
(car x -> part1)
|
|
||||||
(sparse-matrix-row table part1 ->nonnil row)
|
|
||||||
(cdr x -> ctxt1)
|
|
||||||
(map-sparse-vector-with-indexes row ->* preds2 part2)
|
|
||||||
(when (and (null (assoc part2 context))
|
|
||||||
(null (assoc part2 more-context))
|
|
||||||
(subsetp preds preds2))
|
|
||||||
(push (cons part2 ctxt1) more-context)
|
|
||||||
nil))))
|
|
||||||
(mapc #'message-passing-from context)
|
|
||||||
(do ()
|
|
||||||
((null more-context))
|
|
||||||
(push (pop more-context) context)
|
|
||||||
(message-passing-from (first context)))
|
|
||||||
(setf (snark::row-context row) context))))
|
|
||||||
nil)
|
|
||||||
|
|
||||||
(defun hot-drink-example (&key (use-partitions t) (use-ordering nil))
|
|
||||||
;; Amir & McIlraith partition-based reasoning example
|
|
||||||
(initialize)
|
|
||||||
(when use-partitions
|
|
||||||
(use-partitions '(1 2 3))
|
|
||||||
(partition-communication-table
|
|
||||||
(let ((pct (make-sparse-matrix)))
|
|
||||||
(setf (sparef pct 1 2) '(water)
|
|
||||||
(sparef pct 2 3) '(steam))
|
|
||||||
pct))
|
|
||||||
(pruning-tests (append (pruning-tests?) '(partition-communication))))
|
|
||||||
(cond
|
|
||||||
(use-ordering
|
|
||||||
(use-resolution t)
|
|
||||||
(use-literal-ordering-with-resolution 'literal-ordering-a)
|
|
||||||
(declare-proposition 'ok_pump)
|
|
||||||
(declare-proposition 'on_pump)
|
|
||||||
(declare-proposition 'man_fill)
|
|
||||||
(declare-proposition 'water)
|
|
||||||
(declare-proposition 'ok_boiler)
|
|
||||||
(declare-proposition 'on_boiler)
|
|
||||||
(declare-proposition 'steam)
|
|
||||||
(declare-proposition 'coffee)
|
|
||||||
(declare-proposition 'hot_drink)
|
|
||||||
(declare-ordering-greaterp '(ok_pump on_pump man_fill) 'water)
|
|
||||||
(declare-ordering-greaterp '(water ok_boiler on_boiler) 'steam)
|
|
||||||
(declare-ordering-greaterp 'coffee 'hot_drink))
|
|
||||||
(t
|
|
||||||
(use-hyperresolution t)))
|
|
||||||
(dolist (wff '((or (not ok_pump) (not on_pump) water)
|
|
||||||
(or (not man_fill) water)
|
|
||||||
(or (not man_fill) (not on_pump))
|
|
||||||
(or man_fill on_pump)))
|
|
||||||
(assert wff :partitions '(1)))
|
|
||||||
(dolist (wff '((or (not water) (not ok_boiler) (not on_boiler) steam)
|
|
||||||
(or water (not steam))
|
|
||||||
(or ok_boiler (not steam))
|
|
||||||
(or on_boiler (not steam))))
|
|
||||||
(assert wff :partitions '(2)))
|
|
||||||
(dolist (wff '((or (not steam) (not coffee) hot_drink)
|
|
||||||
(or coffee teabag)
|
|
||||||
(or (not steam) (not teabag) hot_drink)))
|
|
||||||
(assert wff :partitions '(3)))
|
|
||||||
(assume 'ok_pump :partitions '(1))
|
|
||||||
(assume 'ok_boiler :partitions '(2))
|
|
||||||
(assume 'on_boiler :partitions '(2))
|
|
||||||
(closure))
|
|
||||||
|
|
||||||
;;; hot-drink-example.lisp EOF
|
|
Binary file not shown.
|
@ -1,121 +0,0 @@
|
||||||
;;; -*- Mode: Lisp; Syntax: Common-Lisp; Package: snark-user -*-
|
|
||||||
;;; File: latin-squares.lisp
|
|
||||||
;;; The contents of this file are subject to the Mozilla Public License
|
|
||||||
;;; Version 1.1 (the "License"); you may not use this file except in
|
|
||||||
;;; compliance with the License. You may obtain a copy of the License at
|
|
||||||
;;; http://www.mozilla.org/MPL/
|
|
||||||
;;;
|
|
||||||
;;; Software distributed under the License is distributed on an "AS IS"
|
|
||||||
;;; basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the
|
|
||||||
;;; License for the specific language governing rights and limitations
|
|
||||||
;;; under the License.
|
|
||||||
;;;
|
|
||||||
;;; The Original Code is SNARK.
|
|
||||||
;;; The Initial Developer of the Original Code is SRI International.
|
|
||||||
;;; Portions created by the Initial Developer are Copyright (C) 1981-2006.
|
|
||||||
;;; All Rights Reserved.
|
|
||||||
;;;
|
|
||||||
;;; Contributor(s): Mark E. Stickel <stickel@ai.sri.com>.
|
|
||||||
|
|
||||||
(in-package :snark-user)
|
|
||||||
|
|
||||||
(defun latin-square-clauses (order &key clause-set (standard t) &allow-other-keys)
|
|
||||||
(let ((n-1 (- order 1)))
|
|
||||||
;; row, column, and values are numbered in [0,...,order-1]
|
|
||||||
(unless clause-set
|
|
||||||
(setf clause-set (make-dp-clause-set)))
|
|
||||||
(dp-insert-wff `(forall ((i :in (ints 0 ,n-1)) (j :in (ints 0 ,n-1))) (exists ((k :in (ints 0 ,n-1))) (p i j k))) clause-set)
|
|
||||||
(dp-insert-wff `(forall ((i :in (ints 0 ,n-1)) (k :in (ints 0 ,n-1))) (exists ((j :in (ints 0 ,n-1))) (p i j k))) clause-set)
|
|
||||||
(dp-insert-wff `(forall ((j :in (ints 0 ,n-1)) (k :in (ints 0 ,n-1))) (exists ((i :in (ints 0 ,n-1))) (p i j k))) clause-set)
|
|
||||||
(dp-insert-wff `(forall ((i :in (ints 0 ,n-1))
|
|
||||||
(j :in (ints 0 ,n-1))
|
|
||||||
(k :in (ints 1 ,n-1))
|
|
||||||
(l :in (ints 0 (- k 1))))
|
|
||||||
(and
|
|
||||||
(or (not (p i j l)) (not (p i j k)))
|
|
||||||
(or (not (p i l j)) (not (p i k j)))
|
|
||||||
(or (not (p l i j)) (not (p k i j)))))
|
|
||||||
clause-set)
|
|
||||||
(when standard
|
|
||||||
;; fix first row and column for standard form
|
|
||||||
(dp-insert-wff `(forall ((j :in (ints 0 ,n-1))) (p 0 j j)) clause-set)
|
|
||||||
(dp-insert-wff `(forall ((i :in (ints 0 ,n-1))) (p i 0 i)) clause-set))
|
|
||||||
clause-set))
|
|
||||||
|
|
||||||
(defun model-to-latin-square (atoms &optional order)
|
|
||||||
;; convert list of p atoms to sequence of sequences representation of latin square
|
|
||||||
(unless order
|
|
||||||
(let ((n 0)) ;find its order
|
|
||||||
(dolist (atom atoms)
|
|
||||||
(when (and (consp atom) (eq 'p (first atom)))
|
|
||||||
(dolist (k (rest atom))
|
|
||||||
(when (> k n)
|
|
||||||
(setf n k)))))
|
|
||||||
(setf order (+ n 1))))
|
|
||||||
(let ((ls (make-array order)))
|
|
||||||
(dotimes (i order)
|
|
||||||
(setf (aref ls i) (make-array order :initial-element nil)))
|
|
||||||
(dolist (atom atoms)
|
|
||||||
(when (and (consp atom) (eq 'p (first atom)))
|
|
||||||
(let ((i (second atom))
|
|
||||||
(j (third atom))
|
|
||||||
(k (fourth atom)))
|
|
||||||
(cl:assert (null (aref (aref ls i) j)))
|
|
||||||
(setf (aref (aref ls i) j) k))))
|
|
||||||
ls))
|
|
||||||
|
|
||||||
(defun generate-latin-squares (order &rest options &key (apply nil) (time t) &allow-other-keys)
|
|
||||||
(let (clause-set)
|
|
||||||
(flet ((make-clause-set ()
|
|
||||||
(setf clause-set (apply #'latin-square-clauses order options)))
|
|
||||||
(generate ()
|
|
||||||
(dp-satisfiable-p clause-set
|
|
||||||
:find-all-models -1
|
|
||||||
:model-test-function (and apply (lambda (model) (funcall apply (model-to-latin-square model order)) t))
|
|
||||||
:trace-choices nil)))
|
|
||||||
(if time (time (make-clause-set)) (make-clause-set))
|
|
||||||
(if time (time (generate)) (generate)))))
|
|
||||||
|
|
||||||
(defun print-latin-square (ls)
|
|
||||||
(map nil (lambda (row) (format t "~%") (map nil (lambda (v) (format t "~3@A" v)) row)) ls)
|
|
||||||
ls)
|
|
||||||
|
|
||||||
(defun latin-square-conjugate (ls conjugate)
|
|
||||||
(let* ((order (length ls))
|
|
||||||
(ls* (make-array order)))
|
|
||||||
(dotimes (i order)
|
|
||||||
(setf (elt ls* i) (make-array order :initial-element nil)))
|
|
||||||
(dotimes (i order)
|
|
||||||
(dotimes (j order)
|
|
||||||
(let ((k (elt (elt ls i) j)))
|
|
||||||
(ecase conjugate
|
|
||||||
(132
|
|
||||||
(setf (elt (elt ls* i) k) j))
|
|
||||||
(213
|
|
||||||
(setf (elt (elt ls* j) i) k))
|
|
||||||
(231
|
|
||||||
(setf (elt (elt ls* j) k) i))
|
|
||||||
((312 column)
|
|
||||||
(setf (elt (elt ls* k) i) j))
|
|
||||||
((321 row)
|
|
||||||
(setf (elt (elt ls* k) j) i))
|
|
||||||
(123 ;makes copy of ls
|
|
||||||
(setf (elt (elt ls* i) j) k))))))
|
|
||||||
ls*))
|
|
||||||
|
|
||||||
(defun latin-square-standard-form (ls)
|
|
||||||
(let* ((order (length ls))
|
|
||||||
(ls* (make-array order)))
|
|
||||||
(dotimes (i order)
|
|
||||||
(setf (elt ls* i) (make-array order :initial-element nil)))
|
|
||||||
;; renumber entries so first row is 0,...,order-1
|
|
||||||
(let ((row0 (elt ls 0)))
|
|
||||||
(dotimes (i order)
|
|
||||||
(let ((rowi (elt ls i))
|
|
||||||
(rowi* (elt ls* i)))
|
|
||||||
(dotimes (j order)
|
|
||||||
(setf (elt rowi* j) (position (elt rowi j) row0))))))
|
|
||||||
;; sort rows so that first column is 0,...,order-1
|
|
||||||
(sort ls* #'< :key (lambda (x) (elt x 0)))))
|
|
||||||
|
|
||||||
;;; latin-squares.lisp EOF
|
|
Binary file not shown.
|
@ -1,359 +0,0 @@
|
||||||
;;; -*- Mode: Lisp; Syntax: Common-Lisp; Package: snark-user -*-
|
|
||||||
;;; File: overbeek-test.lisp
|
|
||||||
;;; The contents of this file are subject to the Mozilla Public License
|
|
||||||
;;; Version 1.1 (the "License"); you may not use this file except in
|
|
||||||
;;; compliance with the License. You may obtain a copy of the License at
|
|
||||||
;;; http://www.mozilla.org/MPL/
|
|
||||||
;;;
|
|
||||||
;;; Software distributed under the License is distributed on an "AS IS"
|
|
||||||
;;; basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the
|
|
||||||
;;; License for the specific language governing rights and limitations
|
|
||||||
;;; under the License.
|
|
||||||
;;;
|
|
||||||
;;; The Original Code is SNARK.
|
|
||||||
;;; The Initial Developer of the Original Code is SRI International.
|
|
||||||
;;; Portions created by the Initial Developer are Copyright (C) 1981-2008.
|
|
||||||
;;; All Rights Reserved.
|
|
||||||
;;;
|
|
||||||
;;; Contributor(s): Mark E. Stickel <stickel@ai.sri.com>.
|
|
||||||
|
|
||||||
(in-package :snark-user)
|
|
||||||
|
|
||||||
(defun overbeek-test (&key (verbose t))
|
|
||||||
#+Symbolics (zl:print-herald)
|
|
||||||
(let ((p1 (default-print-rows-when-given?))
|
|
||||||
(p2 (default-print-rows-when-derived?))
|
|
||||||
(p3 (default-print-rows-prettily?))
|
|
||||||
(p4 (default-print-final-rows?))
|
|
||||||
(p5 (default-print-options-when-starting?))
|
|
||||||
(p6 (default-print-assertion-analysis-notes?))
|
|
||||||
(p7 (default-print-term-memory-when-finished?))
|
|
||||||
(p8 (default-print-agenda-when-finished?)))
|
|
||||||
(unwind-protect
|
|
||||||
(let ((total-seconds 0.0))
|
|
||||||
(dolist (x '(
|
|
||||||
;; (print-rows-when-given print-rows-when-derived print-wffs-when-done problem-name)
|
|
||||||
(t t nil overbeek1)
|
|
||||||
(t t nil overbeek1e)
|
|
||||||
(t t nil overbeek3e)
|
|
||||||
(t t nil overbeek6)
|
|
||||||
(t t nil overbeek2e)
|
|
||||||
(t :signal nil overbeek2)
|
|
||||||
(t t nil overbeek4e)
|
|
||||||
(t t nil overbeek3)
|
|
||||||
(t t nil overbeek7e)
|
|
||||||
(t :signal nil overbeek7)
|
|
||||||
(t :signal nil overbeek4)
|
|
||||||
(t :signal nil overbeek5e)
|
|
||||||
(t :signal nil overbeek6e)
|
|
||||||
(t :signal nil overbeek5)
|
|
||||||
(t :signal nil overbeek6-1)
|
|
||||||
(t :signal nil overbeek4-1)
|
|
||||||
;; (t t nil overbeek5-1)
|
|
||||||
;; (t t nil overbeek7-1)
|
|
||||||
;; (t t nil overbeek7e-1)
|
|
||||||
;;overbeek8e
|
|
||||||
;;overbeek9e
|
|
||||||
;;overbeek10e
|
|
||||||
))
|
|
||||||
(dotimes (i 3) (terpri))
|
|
||||||
(let ((#-symbolics *break-on-signals* #+symbolics conditions::*break-on-signals* nil)
|
|
||||||
(snark::critique-options t))
|
|
||||||
(default-print-rows-when-given (and verbose (first x)))
|
|
||||||
(default-print-rows-when-derived (and verbose (second x)))
|
|
||||||
(default-print-row-wffs-prettily nil)
|
|
||||||
(unless verbose
|
|
||||||
(default-print-final-rows nil)
|
|
||||||
(default-print-options-when-starting nil)
|
|
||||||
(default-print-assertion-analysis-notes nil)
|
|
||||||
(default-print-term-memory-when-finished nil)
|
|
||||||
(default-print-agenda-when-finished nil))
|
|
||||||
(funcall (print (fourth x))))
|
|
||||||
(incf total-seconds snark-lisp::*total-seconds*)
|
|
||||||
(when (third x)
|
|
||||||
(terpri)
|
|
||||||
(print-rows :ancestry t))
|
|
||||||
(prin1 (fourth x))
|
|
||||||
(terpri))
|
|
||||||
(format t "~%OVERBEEK-TEST Total = ~D seconds" (round total-seconds)))
|
|
||||||
(default-print-rows-when-given p1)
|
|
||||||
(default-print-rows-when-derived p2)
|
|
||||||
(default-print-row-wffs-prettily p3)
|
|
||||||
(default-print-final-rows p4)
|
|
||||||
(default-print-options-when-starting p5)
|
|
||||||
(default-print-assertion-analysis-notes p6)
|
|
||||||
(default-print-term-memory-when-finished p7)
|
|
||||||
(default-print-agenda-when-finished p8)
|
|
||||||
nil)))
|
|
||||||
|
|
||||||
(defun refute-snark-example-file (name options &key format)
|
|
||||||
(refute-file
|
|
||||||
(make-pathname :directory (append (pathname-directory cl-user::*snark-system-pathname*) (list "examples"))
|
|
||||||
:name name
|
|
||||||
:type (case format (:tptp "tptp") (otherwise "kif")))
|
|
||||||
:options options
|
|
||||||
:format format
|
|
||||||
:ignore-errors nil
|
|
||||||
:verbose t
|
|
||||||
:output-file nil
|
|
||||||
:package :snark-user))
|
|
||||||
|
|
||||||
(defun overbeek1 ()
|
|
||||||
(refute-snark-example-file
|
|
||||||
"GRP001-1+rm_eq_rstfp"
|
|
||||||
'(;;(agenda-ordering-function #'fifo)
|
|
||||||
;;(row-weight-limit 4) ;4 is minimum value for which proof can be found
|
|
||||||
(declare-constant 'e :alias 'identity)
|
|
||||||
(declare-constant 'a)
|
|
||||||
(declare-constant 'b)
|
|
||||||
(declare-constant 'c)
|
|
||||||
(declare-function 'f 2 :alias 'multiply :ordering-status :left-to-right)
|
|
||||||
(declare-function 'g 1 :alias 'inverse :kbo-weight 0)
|
|
||||||
(declare-relation 'p 3 :alias 'product)
|
|
||||||
(ordering-functions>constants t)
|
|
||||||
(declare-ordering-greaterp 'g 'f 'c 'b 'a 'e)
|
|
||||||
(use-hyperresolution t)
|
|
||||||
(use-term-ordering :kbo))))
|
|
||||||
|
|
||||||
(defun overbeek2 ()
|
|
||||||
(refute-snark-example-file
|
|
||||||
"GRP002-1+rm_eq_rstfp"
|
|
||||||
'(;;(ROW-WEIGHT-LIMIT 9)
|
|
||||||
(declare-constant 'e :alias 'identity)
|
|
||||||
(declare-constant 'a)
|
|
||||||
(declare-constant 'b)
|
|
||||||
(declare-constant 'c)
|
|
||||||
(declare-constant 'd)
|
|
||||||
(declare-constant 'h)
|
|
||||||
(declare-constant 'j)
|
|
||||||
(declare-constant 'k)
|
|
||||||
(declare-function 'f 2 :alias 'multiply)
|
|
||||||
(declare-function 'g 1 :alias 'inverse :kbo-weight '(1 2))
|
|
||||||
(declare-relation 'p 3 :alias 'product)
|
|
||||||
(ordering-functions>constants t)
|
|
||||||
(declare-ordering-greaterp 'g 'f 'k 'j 'h 'd 'c 'b 'a 'e)
|
|
||||||
(use-hyperresolution t)
|
|
||||||
(use-term-ordering :kbo))))
|
|
||||||
|
|
||||||
(defun overbeek3 ()
|
|
||||||
(refute-snark-example-file
|
|
||||||
"RNG008-6+rm_eq_rstfp"
|
|
||||||
'(;;(agenda-ordering-function #'fifo)
|
|
||||||
;;(row-weight-limit 8) ;8 is minimum value for which proof can be found
|
|
||||||
(declare-constant 'zero :alias 'additive_identity)
|
|
||||||
(declare-constant 'a)
|
|
||||||
(declare-constant 'b)
|
|
||||||
(declare-constant 'c)
|
|
||||||
(declare-function 'j 2 :alias 'add :ordering-status :left-to-right)
|
|
||||||
(declare-function 'f 2 :alias 'multiply :ordering-status :left-to-right)
|
|
||||||
(declare-function 'g 1 :alias 'additive_inverse :kbo-weight 0)
|
|
||||||
(declare-relation 's 3 :alias 'sum)
|
|
||||||
(declare-relation 'p 3 :alias 'product)
|
|
||||||
(ordering-functions>constants t)
|
|
||||||
(declare-ordering-greaterp 'g 'f 'j 'c 'b 'a 'zero)
|
|
||||||
(use-hyperresolution t)
|
|
||||||
(use-term-ordering :kbo))))
|
|
||||||
|
|
||||||
(defun overbeek4 ()
|
|
||||||
(refute-snark-example-file
|
|
||||||
"LCL024-1+rm_eq_rstfp"
|
|
||||||
'((declare-relation 'p 1 :alias 'is_a_theorem)
|
|
||||||
(declare-function 'e 2 :alias 'equivalent)
|
|
||||||
(use-hyperresolution t))))
|
|
||||||
|
|
||||||
(defun overbeek5 ()
|
|
||||||
(refute-snark-example-file
|
|
||||||
"LCL038-1+rm_eq_rstfp"
|
|
||||||
'((declare-relation 'p 1 :alias 'is_a_theorem)
|
|
||||||
(declare-function 'i 2 :alias 'implies)
|
|
||||||
(use-hyperresolution t))))
|
|
||||||
|
|
||||||
(defun overbeek6 ()
|
|
||||||
(refute-snark-example-file
|
|
||||||
"LCL111-1"
|
|
||||||
'((declare-relation 'p 1 :alias '|is_a_theorem|)
|
|
||||||
(declare-function 'i 2 :alias '|implies|)
|
|
||||||
(declare-function 'n 1 :alias '|not|)
|
|
||||||
;;(agenda-ordering-function #'fifo) ;very fast with fifo ordering
|
|
||||||
(use-hyperresolution t)
|
|
||||||
(level-pref-for-giving 1))
|
|
||||||
:format :tptp))
|
|
||||||
|
|
||||||
(defun overbeek7 ()
|
|
||||||
(refute-snark-example-file
|
|
||||||
"LCL114-1+rm_eq_rstfp"
|
|
||||||
'((declare-relation 'p 1 :alias 'is_a_theorem)
|
|
||||||
(declare-function 'i 2 :alias 'implies)
|
|
||||||
(declare-function 'n 1 :alias 'not)
|
|
||||||
(use-hyperresolution t)
|
|
||||||
(level-pref-for-giving 1))))
|
|
||||||
|
|
||||||
(defun overbeek4-1 ()
|
|
||||||
(refute-snark-example-file
|
|
||||||
"LCL024-1+rm_eq_rstfp"
|
|
||||||
'((declare-relation 'p 1 :alias 'is_a_theorem)
|
|
||||||
(declare-function 'e 2 :alias 'equivalent)
|
|
||||||
(use-resolution t)
|
|
||||||
(use-literal-ordering-with-resolution 'literal-ordering-a))))
|
|
||||||
|
|
||||||
(defun overbeek5-1 ()
|
|
||||||
(refute-snark-example-file
|
|
||||||
"LCL038-1+rm_eq_rstfp"
|
|
||||||
'((declare-relation 'p 1 :alias 'is_a_theorem)
|
|
||||||
(declare-function 'i 2 :alias 'implies)
|
|
||||||
(use-resolution t)
|
|
||||||
(use-literal-ordering-with-resolution 'literal-ordering-a))))
|
|
||||||
|
|
||||||
(defun overbeek6-1 ()
|
|
||||||
(refute-snark-example-file
|
|
||||||
"LCL111-1"
|
|
||||||
'((declare-relation 'p 1 :alias '|is_a_theorem|)
|
|
||||||
(declare-function 'i 2 :alias '|implies|)
|
|
||||||
(declare-function 'n 1 :alias '|not|)
|
|
||||||
(use-resolution t)
|
|
||||||
(assert-context :current)
|
|
||||||
(use-literal-ordering-with-resolution 'literal-ordering-a)
|
|
||||||
(level-pref-for-giving 1))
|
|
||||||
:format :tptp))
|
|
||||||
|
|
||||||
(defun overbeek7-1 ()
|
|
||||||
(refute-snark-example-file
|
|
||||||
"LCL114-1+rm_eq_rstfp"
|
|
||||||
'((declare-relation 'p 1 :alias 'is_a_theorem)
|
|
||||||
(declare-function 'i 2 :alias 'implies)
|
|
||||||
(declare-function 'n 1 :alias 'not)
|
|
||||||
(use-resolution t)
|
|
||||||
(use-literal-ordering-with-resolution 'literal-ordering-a)
|
|
||||||
(level-pref-for-giving 1))))
|
|
||||||
|
|
||||||
(defun overbeek1e ()
|
|
||||||
(refute-snark-example-file
|
|
||||||
"GRP002-3+rm_eq_rstfp"
|
|
||||||
'((declare-constant 'e :alias 'identity)
|
|
||||||
(declare-constant 'a)
|
|
||||||
(declare-constant 'b)
|
|
||||||
(declare-function 'f 2 :alias 'multiply :ordering-status :left-to-right)
|
|
||||||
(declare-function 'g 1 :alias 'inverse :kbo-weight '(1 2))
|
|
||||||
(declare-function 'h 2 :alias 'commutator :kbo-weight '(5 3 3) :ordering-status :left-to-right)
|
|
||||||
(ordering-functions>constants t)
|
|
||||||
(declare-ordering-greaterp 'h 'g 'f 'b 'a 'e)
|
|
||||||
(use-paramodulation t)
|
|
||||||
(use-term-ordering :kbo))))
|
|
||||||
|
|
||||||
(defun overbeek2e ()
|
|
||||||
(refute-snark-example-file
|
|
||||||
"ROB005-1+rm_eq_rstfp"
|
|
||||||
'((declare-constant 'a)
|
|
||||||
(declare-constant 'b)
|
|
||||||
(declare-constant 'c)
|
|
||||||
(declare-function 'o 2 :alias 'add)
|
|
||||||
(declare-function 'n 1 :alias 'negate)
|
|
||||||
(ordering-functions>constants t)
|
|
||||||
(declare-ordering-greaterp 'n 'o 'a 'b 'c)
|
|
||||||
(use-paramodulation t))))
|
|
||||||
|
|
||||||
(defun overbeek3e ()
|
|
||||||
(refute-snark-example-file
|
|
||||||
"BOO002-1+rm_eq_rstfp"
|
|
||||||
'(;;(agenda-ordering-function #'fifo)
|
|
||||||
;;(row-weight-limit 15) ;15 is minimum value for which proof can be found
|
|
||||||
(declare-function 'f 3 :alias 'multiply :ORDERING-STATUS :RIGHT-TO-LEFT)
|
|
||||||
(declare-function 'g 1 :alias 'inverse)
|
|
||||||
(declare-constant 'a)
|
|
||||||
(declare-constant 'b)
|
|
||||||
(declare-ordering-greaterp 'b 'a 'g 'f)
|
|
||||||
(use-paramodulation t)
|
|
||||||
(use-term-ordering :kbo))))
|
|
||||||
|
|
||||||
(defun overbeek4e ()
|
|
||||||
(refute-snark-example-file
|
|
||||||
"GRP014-1+rm_eq_rstfp"
|
|
||||||
'((declare-constant 'a)
|
|
||||||
(declare-constant 'b)
|
|
||||||
(declare-constant 'c)
|
|
||||||
(declare-function 'f 2 :alias 'multiply :ordering-status :left-to-right)
|
|
||||||
(declare-function 'i 1 :alias 'inverse :kbo-weight 0)
|
|
||||||
(ordering-functions>constants t)
|
|
||||||
(declare-ordering-greaterp 'i 'f 'c 'b 'a)
|
|
||||||
(use-paramodulation t)
|
|
||||||
(use-term-ordering :kbo) ;KBO better than RPO 4/20/92
|
|
||||||
;;(use-function-creation t) ;constant-creation only, insert new symbols into KB ordering
|
|
||||||
)))
|
|
||||||
|
|
||||||
(defun overbeek5e ()
|
|
||||||
(refute-snark-example-file
|
|
||||||
"LCL109-2+rm_eq_rstfp"
|
|
||||||
'(;;(ROW-WEIGHT-LIMIT 21) ;21 works, think 19 will too
|
|
||||||
(declare-function 'i 2 :alias 'implies #| :ordering-status :left-to-right |#)
|
|
||||||
(declare-function 'n 1 :alias 'not)
|
|
||||||
(declare-constant 'a)
|
|
||||||
(declare-constant 'b)
|
|
||||||
(declare-constant 't :alias 'true0)
|
|
||||||
(ordering-functions>constants t)
|
|
||||||
(declare-ordering-greaterp 'i 'n 'a 'b 't)
|
|
||||||
(use-paramodulation t))))
|
|
||||||
|
|
||||||
(defun overbeek6e ()
|
|
||||||
(refute-snark-example-file
|
|
||||||
"COL049-1+rm_eq_rstfp"
|
|
||||||
'(;;(row-weight-limit 21) ;don't know what value works (19 doesn't)
|
|
||||||
(declare-function 'a 2 :alias 'apply :ordering-status :left-to-right)
|
|
||||||
(declare-function 'f 1 :weight-code (list (constantly 1)))
|
|
||||||
(declare-constant 'b)
|
|
||||||
(declare-constant 'm)
|
|
||||||
(declare-constant 'w)
|
|
||||||
(ordering-functions>constants t)
|
|
||||||
(declare-ordering-greaterp 'a 'f 'b 'w 'm)
|
|
||||||
(use-paramodulation t))))
|
|
||||||
|
|
||||||
(defun overbeek7e ()
|
|
||||||
(refute-snark-example-file
|
|
||||||
"RNG009-5+rm_eq_rstfp"
|
|
||||||
'((row-weight-before-simplification-limit 100)
|
|
||||||
(row-weight-limit 50)
|
|
||||||
(declare-constant 'zero :alias 'additive_identity)
|
|
||||||
(declare-function '* 2 :alias 'multiply :ordering-status :left-to-right)
|
|
||||||
(declare-function '- 1 :alias 'additive_inverse)
|
|
||||||
(declare-function '+ 2 :alias 'add)
|
|
||||||
(ordering-functions>constants t)
|
|
||||||
(declare-ordering-greaterp '* '- '+ 'zero)
|
|
||||||
(DECLARE-CANCELLATION-LAW '= '+ 'zero)
|
|
||||||
(use-paramodulation t))))
|
|
||||||
|
|
||||||
(defun overbeek7e-1 ()
|
|
||||||
(refute-snark-example-file
|
|
||||||
"RNG009-5+rm_eq_rstfp"
|
|
||||||
'((row-weight-before-simplification-limit 100)
|
|
||||||
(row-weight-limit 50)
|
|
||||||
(declare-constant 'zero :alias 'additive_identity)
|
|
||||||
(declare-function '* 2 :alias 'multiply :ordering-status :left-to-right)
|
|
||||||
(declare-function '- 1 :alias 'additive_inverse)
|
|
||||||
(declare-function '+ 2 :alias 'add)
|
|
||||||
(ordering-functions>constants t)
|
|
||||||
(declare-ordering-greaterp '* '- '+ 'zero)
|
|
||||||
(DECLARE-CANCELLATION-LAW '= '+ 'zero)
|
|
||||||
(use-paramodulation t)
|
|
||||||
(use-associative-unification t))))
|
|
||||||
|
|
||||||
(defun overbeek8e ()
|
|
||||||
(refute-snark-example-file
|
|
||||||
"COL003-1+rm_eq_rstfp"
|
|
||||||
'((declare-function 'a 2 :alias 'apply :ordering-status :left-to-right)
|
|
||||||
(declare-function 'f 1 :weight-code (list (constantly 1)))
|
|
||||||
(declare-constant 'b)
|
|
||||||
(declare-constant 'w)
|
|
||||||
(ordering-functions>constants t)
|
|
||||||
(declare-ordering-greaterp 'a 'f 'b 'w)
|
|
||||||
(use-paramodulation t))))
|
|
||||||
|
|
||||||
(defun overbeek9e ()
|
|
||||||
(refute-snark-example-file
|
|
||||||
"RNG010-5+rm_eq_rstfp"
|
|
||||||
'((use-paramodulation t))))
|
|
||||||
|
|
||||||
(defun overbeek10e ()
|
|
||||||
(refute-snark-example-file
|
|
||||||
"RNG011-5+rm_eq_rstfp"
|
|
||||||
'((use-paramodulation t))))
|
|
||||||
|
|
||||||
;;; overbeek-test.lisp EOF
|
|
|
@ -1,191 +0,0 @@
|
||||||
;;; -*- Mode: Lisp; Syntax: Common-Lisp; Package: snark-user -*-
|
|
||||||
;;; File: ramsey-examples.lisp
|
|
||||||
;;; The contents of this file are subject to the Mozilla Public License
|
|
||||||
;;; Version 1.1 (the "License"); you may not use this file except in
|
|
||||||
;;; compliance with the License. You may obtain a copy of the License at
|
|
||||||
;;; http://www.mozilla.org/MPL/
|
|
||||||
;;;
|
|
||||||
;;; Software distributed under the License is distributed on an "AS IS"
|
|
||||||
;;; basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the
|
|
||||||
;;; License for the specific language governing rights and limitations
|
|
||||||
;;; under the License.
|
|
||||||
;;;
|
|
||||||
;;; The Original Code is SNARK.
|
|
||||||
;;; The Initial Developer of the Original Code is SRI International.
|
|
||||||
;;; Portions created by the Initial Developer are Copyright (C) 1981-2006.
|
|
||||||
;;; All Rights Reserved.
|
|
||||||
;;;
|
|
||||||
;;; Contributor(s): Mark E. Stickel <stickel@ai.sri.com>.
|
|
||||||
|
|
||||||
(in-package :snark-user)
|
|
||||||
|
|
||||||
;;; see http://mathworld.wolfram.com/RamseyNumber.html
|
|
||||||
;;; for Ramsey Number definition and results
|
|
||||||
;;;
|
|
||||||
;;; r( 3, 3) = 6 done
|
|
||||||
;;; r( 3, 4) = 9 done
|
|
||||||
;;; r( 3, 5) = 14 done
|
|
||||||
;;; r( 3, 6) = 18
|
|
||||||
;;; r( 3, 7) = 23
|
|
||||||
;;; r( 3, 8) = 28
|
|
||||||
;;; r( 3, 9) = 36
|
|
||||||
;;; r( 3,10) in [40,43]
|
|
||||||
;;; r( 4, 4) = 18
|
|
||||||
;;; r( 4, 5) = 25
|
|
||||||
;;; r( 4, 6) in [35,41]
|
|
||||||
;;; r( 5, 5) in [43,49]
|
|
||||||
;;; r( 6, 6) in [102,165]
|
|
||||||
|
|
||||||
(defun ramsey-3-3 (n)
|
|
||||||
;; results: found to be satisfiable for n=5, unsatisfiable for n=6 (should be unsatisfiable iff n>=6)
|
|
||||||
(let ((clause-set (make-dp-clause-set)))
|
|
||||||
(no-clique-of-order-3 n clause-set)
|
|
||||||
(no-independent-set-of-order-3 n clause-set)
|
|
||||||
(dp-satisfiable-p clause-set :atom-choice-function #'choose-an-atom-of-a-shortest-clause)))
|
|
||||||
|
|
||||||
(defun ramsey-3-4 (n)
|
|
||||||
;; results: found to be satisfiable for n=8, unsatisfiable for n=9 (should be unsatisfiable iff n>=9)
|
|
||||||
(let ((clause-set (make-dp-clause-set)))
|
|
||||||
(no-clique-of-order-3 n clause-set)
|
|
||||||
(no-independent-set-of-order-4 n clause-set)
|
|
||||||
(dp-satisfiable-p clause-set :atom-choice-function #'choose-an-atom-of-a-shortest-clause)))
|
|
||||||
|
|
||||||
(defun ramsey-3-5 (n)
|
|
||||||
;; results: found to be satisfiable for n=13, unsatisfiable for n=14 (should be unsatisfiable iff n>=14)
|
|
||||||
(let ((clause-set (make-dp-clause-set)))
|
|
||||||
(no-clique-of-order-3 n clause-set)
|
|
||||||
(no-independent-set-of-order-5 n clause-set)
|
|
||||||
(dp-satisfiable-p clause-set :atom-choice-function #'choose-an-atom-of-a-shortest-clause)))
|
|
||||||
|
|
||||||
(defun ramsey-3-6 (n)
|
|
||||||
;; results: found to be satisfiable for n=17, unsatisfiable for n=?? (should be unsatisfiable iff n>=18)
|
|
||||||
(let ((clause-set (make-dp-clause-set)))
|
|
||||||
(no-clique-of-order-3 n clause-set)
|
|
||||||
(no-independent-set-of-order-6 n clause-set)
|
|
||||||
(dp-satisfiable-p clause-set :atom-choice-function #'choose-an-atom-of-a-shortest-clause)))
|
|
||||||
|
|
||||||
(defun ramsey-4-4 (n)
|
|
||||||
;; results: found to be satisfiable for n=17, unsatisfiable for n=?? (should be unsatisfiable iff n>=18)
|
|
||||||
(let ((clause-set (make-dp-clause-set)))
|
|
||||||
(no-clique-of-order-4 n clause-set)
|
|
||||||
(no-independent-set-of-order-4 n clause-set)
|
|
||||||
(dp-satisfiable-p clause-set :atom-choice-function #'choose-an-atom-of-a-shortest-clause)))
|
|
||||||
|
|
||||||
(defun ramsey-4-5 (n)
|
|
||||||
;; results: found to be satisfiable for n=23, unsatisfiable for n=?? (should be unsatisfiable iff n>=25)
|
|
||||||
(let ((clause-set (make-dp-clause-set)))
|
|
||||||
(no-clique-of-order-4 n clause-set)
|
|
||||||
(no-independent-set-of-order-5 n clause-set)
|
|
||||||
(dp-satisfiable-p clause-set :atom-choice-function #'choose-an-atom-of-a-shortest-clause-WITH-MOST-OCCURRENCES-RANDOMLY)))
|
|
||||||
|
|
||||||
(defun ramsey-4-6 (n)
|
|
||||||
;; results: found to be satisfiable for n=29, unsatisfiable for n=??
|
|
||||||
(let ((clause-set (make-dp-clause-set)))
|
|
||||||
(no-clique-of-order-4 n clause-set)
|
|
||||||
(no-independent-set-of-order-6 n clause-set)
|
|
||||||
(dp-satisfiable-p clause-set :atom-choice-function #'choose-an-atom-of-a-shortest-clause-WITH-MOST-OCCURRENCES-RANDOMLY)))
|
|
||||||
|
|
||||||
(defun no-clique-of-order-3 (nnodes clause-set)
|
|
||||||
;; in every 3 node subset, at least one pair is not connected
|
|
||||||
(dp-insert-wff `(forall ((i :in (ints 1 ,nnodes))
|
|
||||||
(j :in (ints i ,nnodes) :except i)
|
|
||||||
(k :in (ints j ,nnodes) :except j))
|
|
||||||
(or (not (c i j)) (not (c i k)) (not (c j k))))
|
|
||||||
clause-set))
|
|
||||||
|
|
||||||
(defun no-clique-of-order-4 (nnodes clause-set)
|
|
||||||
;; in every 4 node subset, at least one pair is not connected
|
|
||||||
(dp-insert-wff `(forall ((i :in (ints 1 ,nnodes))
|
|
||||||
(j :in (ints i ,nnodes) :except i)
|
|
||||||
(k :in (ints j ,nnodes) :except j)
|
|
||||||
(l :in (ints k ,nnodes) :except k))
|
|
||||||
(or (not (c i j)) (not (c i k)) (not (c i l)) (not (c j k)) (not (c j l)) (not (c k l))))
|
|
||||||
clause-set))
|
|
||||||
|
|
||||||
(defun no-clique-of-order-5 (nnodes clause-set)
|
|
||||||
;; in every 5 node subset, at least one pair is not connected
|
|
||||||
(dp-insert-wff `(forall ((i :in (ints 1 ,nnodes))
|
|
||||||
(j :in (ints i ,nnodes) :except i)
|
|
||||||
(k :in (ints j ,nnodes) :except j)
|
|
||||||
(l :in (ints k ,nnodes) :except k)
|
|
||||||
(m :in (ints l ,nnodes) :except l))
|
|
||||||
(or (not (c i j)) (not (c i k)) (not (c i l)) (not (c i m))
|
|
||||||
(not (c j k)) (not (c j l)) (not (c j m))
|
|
||||||
(not (c k l)) (not (c k m))
|
|
||||||
(not (c l m))))
|
|
||||||
clause-set))
|
|
||||||
|
|
||||||
(defun no-clique-of-order-6 (nnodes clause-set)
|
|
||||||
;; in every 6 node subset, at least one pair is not connected
|
|
||||||
(dp-insert-wff `(forall ((i :in (ints 1 ,nnodes))
|
|
||||||
(j :in (ints i ,nnodes) :except i)
|
|
||||||
(k :in (ints j ,nnodes) :except j)
|
|
||||||
(l :in (ints k ,nnodes) :except k)
|
|
||||||
(m :in (ints l ,nnodes) :except l)
|
|
||||||
(n :in (ints m ,nnodes) :except m))
|
|
||||||
(or (not (c i j)) (not (c i k)) (not (c i l)) (not (c i m)) (not (c i n))
|
|
||||||
(not (c j k)) (not (c j l)) (not (c j m)) (not (c j n))
|
|
||||||
(not (c k l)) (not (c k m)) (not (c k n))
|
|
||||||
(not (c l m)) (not (c l n))
|
|
||||||
(not (c m n))))
|
|
||||||
clause-set))
|
|
||||||
|
|
||||||
(defun no-independent-set-of-order-3 (nnodes clause-set)
|
|
||||||
;; in every 3 node subset, at least one pair is connected
|
|
||||||
(dp-insert-wff `(forall ((i :in (ints 1 ,nnodes))
|
|
||||||
(j :in (ints i ,nnodes) :except i)
|
|
||||||
(k :in (ints j ,nnodes) :except j))
|
|
||||||
(or (c i j) (c i k) (c j k)))
|
|
||||||
clause-set))
|
|
||||||
|
|
||||||
(defun no-independent-set-of-order-4 (nnodes clause-set)
|
|
||||||
;; in every 4 node subset, at least one pair is connected
|
|
||||||
(dp-insert-wff `(forall ((i :in (ints 1 ,nnodes))
|
|
||||||
(j :in (ints i ,nnodes) :except i)
|
|
||||||
(k :in (ints j ,nnodes) :except j)
|
|
||||||
(l :in (ints k ,nnodes) :except k))
|
|
||||||
(or (c i j) (c i k) (c i l) (c j k) (c j l) (c k l)))
|
|
||||||
clause-set))
|
|
||||||
|
|
||||||
(defun no-independent-set-of-order-5 (nnodes clause-set)
|
|
||||||
;; in every 5 node-subset, at least one pair is connected
|
|
||||||
(dp-insert-wff `(forall ((i :in (ints 1 ,nnodes))
|
|
||||||
(j :in (ints i ,nnodes) :except i)
|
|
||||||
(k :in (ints j ,nnodes) :except j)
|
|
||||||
(l :in (ints k ,nnodes) :except k)
|
|
||||||
(m :in (ints l ,nnodes) :except l))
|
|
||||||
(or (c i j) (c i k) (c i l) (c i m)
|
|
||||||
(c j k) (c j l) (c j m)
|
|
||||||
(c k l) (c k m)
|
|
||||||
(c l m)))
|
|
||||||
clause-set))
|
|
||||||
|
|
||||||
(defun no-independent-set-of-order-6 (nnodes clause-set)
|
|
||||||
;; in every 6 node-subset, at least one pair is connected
|
|
||||||
(dp-insert-wff `(forall ((i :in (ints 1 ,nnodes))
|
|
||||||
(j :in (ints i ,nnodes) :except i)
|
|
||||||
(k :in (ints j ,nnodes) :except j)
|
|
||||||
(l :in (ints k ,nnodes) :except k)
|
|
||||||
(m :in (ints l ,nnodes) :except l)
|
|
||||||
(n :in (ints m ,nnodes) :except m))
|
|
||||||
(or (c i j) (c i k) (c i l) (c i m) (c i n)
|
|
||||||
(c j k) (c j l) (c j m) (c j n)
|
|
||||||
(c k l) (c k m) (c k n)
|
|
||||||
(c l m) (c l n)
|
|
||||||
(c m n)))
|
|
||||||
clause-set))
|
|
||||||
|
|
||||||
(defun ramsey-test ()
|
|
||||||
;; there doesn't seem to be any difference in search space size between choose-an-atom-of-a-shortest-clause and choose-an-atom-of-a-shortest-clause-randomly
|
|
||||||
;; choose-an-atom-of-a-shortest-clause-with-most-occurrences-randomly seems to work much better for satisfiable instances
|
|
||||||
(cl:assert (eval (print '(ramsey-3-3 5)))) ;2 branches
|
|
||||||
(cl:assert (not (eval (print '(ramsey-3-3 6))))) ;22 branches
|
|
||||||
(cl:assert (eval (print '(ramsey-3-4 8)))) ;4 branches
|
|
||||||
(cl:assert (not (eval (print '(ramsey-3-4 9))))) ;10,251 branches
|
|
||||||
(cl:assert (eval (print '(ramsey-3-5 13)))) ;93,125 branches
|
|
||||||
;;(cl:assert (not (eval (print '(ramsey-3-5 14))))) ;1,078,238,816 branches
|
|
||||||
;;(cl:assert (eval (print '(ramsey-4-4 17)))) ;56,181,666 branches
|
|
||||||
;;(cl:assert (not (eval (print '(ramsey-4-4 18)))))
|
|
||||||
)
|
|
||||||
|
|
||||||
;;; ramsey-examples.lisp EOF
|
|
Binary file not shown.
|
@ -1,51 +0,0 @@
|
||||||
;;; -*- Mode: Lisp; Syntax: Common-Lisp; Package: snark-user -*-
|
|
||||||
;;; File: reverse-example.lisp
|
|
||||||
;;; The contents of this file are subject to the Mozilla Public License
|
|
||||||
;;; Version 1.1 (the "License"); you may not use this file except in
|
|
||||||
;;; compliance with the License. You may obtain a copy of the License at
|
|
||||||
;;; http://www.mozilla.org/MPL/
|
|
||||||
;;;
|
|
||||||
;;; Software distributed under the License is distributed on an "AS IS"
|
|
||||||
;;; basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the
|
|
||||||
;;; License for the specific language governing rights and limitations
|
|
||||||
;;; under the License.
|
|
||||||
;;;
|
|
||||||
;;; The Original Code is SNARK.
|
|
||||||
;;; The Initial Developer of the Original Code is SRI International.
|
|
||||||
;;; Portions created by the Initial Developer are Copyright (C) 1981-2006.
|
|
||||||
;;; All Rights Reserved.
|
|
||||||
;;;
|
|
||||||
;;; Contributor(s): Mark E. Stickel <stickel@ai.sri.com>.
|
|
||||||
|
|
||||||
(in-package :snark-user)
|
|
||||||
|
|
||||||
(defun reverse-example (&key (length 3) magic)
|
|
||||||
(let ((l nil))
|
|
||||||
(dotimes (i length)
|
|
||||||
(push i l))
|
|
||||||
(initialize)
|
|
||||||
(declare-function '$$cons 2 :new-name 'cons)
|
|
||||||
(declare-function '$$list :any :new-name 'list)
|
|
||||||
(declare-function '$$list* :any :new-name 'list*)
|
|
||||||
(cond
|
|
||||||
(magic
|
|
||||||
(use-hyperresolution t)
|
|
||||||
(use-magic-transformation t))
|
|
||||||
(t
|
|
||||||
(use-resolution t)
|
|
||||||
(assert-supported nil)
|
|
||||||
(assert-sequential t)
|
|
||||||
(print-rows-shortened t)))
|
|
||||||
(assert '(reverse nil nil))
|
|
||||||
(assert '(implied-by
|
|
||||||
(reverse (cons ?x ?l) ?l1)
|
|
||||||
(and
|
|
||||||
(reverse ?l ?l2)
|
|
||||||
(append ?l2 (cons ?x nil) ?l1))))
|
|
||||||
(assert '(append nil ?l ?l))
|
|
||||||
(assert '(implied-by
|
|
||||||
(append (cons ?x ?l1) ?l2 (cons ?x ?l3))
|
|
||||||
(append ?l1 ?l2 ?l3)))
|
|
||||||
(prove `(reverse (list ,@l) ?l) :answer '(values ?l))))
|
|
||||||
|
|
||||||
;;; reverse-example.lisp EOF
|
|
|
@ -1,19 +0,0 @@
|
||||||
;;; a script to run some SNARK examples
|
|
||||||
;;; usage:
|
|
||||||
;;; cd snark
|
|
||||||
;;; lisp < examples/snark-test >& examples/snark-test.out &
|
|
||||||
|
|
||||||
#-snark (load "snark-system.lisp")
|
|
||||||
#-snark (make-snark-system)
|
|
||||||
(in-package :snark-user)
|
|
||||||
(default-print-row-wffs-prettily nil)
|
|
||||||
(overbeek-test)
|
|
||||||
(time (steamroller-example))
|
|
||||||
(time (front-last-example))
|
|
||||||
(time (reverse-example))
|
|
||||||
(time (reverse-example :magic t))
|
|
||||||
(time (hot-drink-example))
|
|
||||||
(coder-test)
|
|
||||||
(time (snark-dpll::queens-problem 8 :find-all-models -1))
|
|
||||||
(generate-latin-squares 7)
|
|
||||||
(quit)
|
|
Binary file not shown.
|
@ -1,82 +0,0 @@
|
||||||
;;; -*- Mode: Lisp; Syntax: Common-Lisp; Package: snark-user -*-
|
|
||||||
;;; File: steamroller-example.lisp
|
|
||||||
;;; The contents of this file are subject to the Mozilla Public License
|
|
||||||
;;; Version 1.1 (the "License"); you may not use this file except in
|
|
||||||
;;; compliance with the License. You may obtain a copy of the License at
|
|
||||||
;;; http://www.mozilla.org/MPL/
|
|
||||||
;;;
|
|
||||||
;;; Software distributed under the License is distributed on an "AS IS"
|
|
||||||
;;; basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the
|
|
||||||
;;; License for the specific language governing rights and limitations
|
|
||||||
;;; under the License.
|
|
||||||
;;;
|
|
||||||
;;; The Original Code is SNARK.
|
|
||||||
;;; The Initial Developer of the Original Code is SRI International.
|
|
||||||
;;; Portions created by the Initial Developer are Copyright (C) 1981-2011.
|
|
||||||
;;; All Rights Reserved.
|
|
||||||
;;;
|
|
||||||
;;; Contributor(s): Mark E. Stickel <stickel@ai.sri.com>.
|
|
||||||
|
|
||||||
(in-package :snark-user)
|
|
||||||
|
|
||||||
(defun steamroller-example0 ()
|
|
||||||
(refute-snark-example-file
|
|
||||||
"PUZ031+1"
|
|
||||||
'((use-hyperresolution))))
|
|
||||||
|
|
||||||
(defun steamroller-example ()
|
|
||||||
(initialize)
|
|
||||||
(use-hyperresolution)
|
|
||||||
|
|
||||||
(declare-sort 'animal :subsorts-incompatible t)
|
|
||||||
(declare-sort 'plant :subsorts-incompatible t)
|
|
||||||
(declare-subsort 'bird 'animal)
|
|
||||||
(declare-subsort 'caterpillar 'animal)
|
|
||||||
(declare-subsort 'fox 'animal)
|
|
||||||
(declare-subsort 'snail 'animal)
|
|
||||||
(declare-subsort 'wolf 'animal)
|
|
||||||
(declare-subsort 'grain 'plant)
|
|
||||||
|
|
||||||
(declare-relation 'e 2 :sort '((1 animal))) ;animal*true
|
|
||||||
(declare-relation 'm 2 :sort '((t animal))) ;animal*animal
|
|
||||||
|
|
||||||
(declare-variable '?a1 :sort 'animal)
|
|
||||||
(declare-variable '?a2 :sort 'animal)
|
|
||||||
|
|
||||||
(assertion (forall ((?s1 snail) (?b1 bird)) ;KIF-style sort specification
|
|
||||||
(m ?s1 ?b1)) ;all KIF variables begin with ?
|
|
||||||
:name snails-are-smaller-than-birds)
|
|
||||||
(assertion (forall ((b1 :sort bird) (f1 :sort fox)) ;SNARK-preferred sort specification
|
|
||||||
(m b1 f1))
|
|
||||||
:name birds-are-smaller-than-foxes)
|
|
||||||
(assertion (forall ((f1 true :sort fox)
|
|
||||||
(w1 wolf :sort wolf)) ;this works too
|
|
||||||
(m f1 w1))
|
|
||||||
:name foxes-are-smaller-than-wolves)
|
|
||||||
(assertion (forall ((w1 wolf) (f1 fox))
|
|
||||||
(not (e w1 f1)))
|
|
||||||
:name wolves-dont-eat-foxes)
|
|
||||||
(assertion (forall ((w1 :sort wolf) (g1 :sort grain))
|
|
||||||
(not (e w1 g1)))
|
|
||||||
:name wolves-dont-eat-grain)
|
|
||||||
(assertion (forall ((b1 :sort bird) (c1 :sort caterpillar))
|
|
||||||
(e b1 c1))
|
|
||||||
:name birds-eat-caterpillars)
|
|
||||||
(assertion (forall ((b1 :sort bird) (s1 :sort snail))
|
|
||||||
(not (e b1 s1)))
|
|
||||||
:name birds-dont-eat-snails)
|
|
||||||
(assertion (forall ((c1 :sort caterpillar))
|
|
||||||
(exists ((p1 :sort plant))
|
|
||||||
(e c1 p1)))
|
|
||||||
:name caterpillars-eat-some-plants)
|
|
||||||
(assertion (forall ((s1 :sort snail))
|
|
||||||
(exists ((p1 :sort plant))
|
|
||||||
(e s1 p1)))
|
|
||||||
:name snails-eat-some-plants)
|
|
||||||
(assertion (forall ((p1 :sort plant) (p2 :sort plant))
|
|
||||||
(implied-by (or (e ?a1 ?a2) (e ?a1 p1)) (and (m ?a2 ?a1) (e ?a2 p2)))))
|
|
||||||
|
|
||||||
(prove '(and (e ?x.animal ?y.animal) (e ?y.animal ?z.grain))
|
|
||||||
:answer '(values ?x.animal ?y.animal ?z.grain)))
|
|
||||||
|
|
||||||
;;; steamroller-example.lisp EOF
|
|
|
@ -1,6 +0,0 @@
|
||||||
ccl < compile >& compile.out
|
|
||||||
ccl << ENDOFSTDIN
|
|
||||||
(load "snark-system.lisp")
|
|
||||||
(make-snark-system)
|
|
||||||
(save-snark-system)
|
|
||||||
ENDOFSTDIN
|
|
|
@ -1,6 +0,0 @@
|
||||||
ccl64 < compile >& compile.out
|
|
||||||
ccl64 << ENDOFSTDIN
|
|
||||||
(load "snark-system.lisp")
|
|
||||||
(make-snark-system)
|
|
||||||
(save-snark-system)
|
|
||||||
ENDOFSTDIN
|
|
|
@ -1,6 +0,0 @@
|
||||||
sbcl < compile >& compile.out
|
|
||||||
sbcl << ENDOFSTDIN
|
|
||||||
(load "snark-system.lisp")
|
|
||||||
(make-snark-system)
|
|
||||||
(save-snark-system :name "snark" :executable t)
|
|
||||||
ENDOFSTDIN
|
|
|
@ -1,6 +0,0 @@
|
||||||
~/sbcl-1.0.29-x86_64-darwin/run-sbcl.sh < compile >& compile.out
|
|
||||||
~/sbcl-1.0.29-x86_64-darwin/run-sbcl.sh << ENDOFSTDIN
|
|
||||||
(load "snark-system.lisp")
|
|
||||||
(make-snark-system)
|
|
||||||
(save-snark-system :name "snark64" :executable t)
|
|
||||||
ENDOFSTDIN
|
|
|
@ -1,55 +0,0 @@
|
||||||
#! /bin/tcsh
|
|
||||||
|
|
||||||
# this is Geoff's run-snark script for SystemOnTPTP as of 2012-08-21
|
|
||||||
|
|
||||||
if (! -f $1) then
|
|
||||||
echo "Missing filename"
|
|
||||||
exit
|
|
||||||
endif
|
|
||||||
echo $1
|
|
||||||
if ($2 == "") then
|
|
||||||
set runtimelimit = nil
|
|
||||||
else
|
|
||||||
set runtimelimit = $2
|
|
||||||
endif
|
|
||||||
|
|
||||||
set this_directory=`dirname $0`
|
|
||||||
$this_directory/snark << ENDOFSTDIN
|
|
||||||
#+sbcl (sb-ext:disable-debugger)
|
|
||||||
(in-package :snark-user)
|
|
||||||
|
|
||||||
(defvar snark-tptp-options)
|
|
||||||
(setf snark-tptp-options
|
|
||||||
'(
|
|
||||||
(agenda-length-limit nil)
|
|
||||||
(agenda-length-before-simplification-limit nil)
|
|
||||||
(use-hyperresolution t)
|
|
||||||
(use-ur-resolution t)
|
|
||||||
(use-paramodulation t)
|
|
||||||
(use-factoring :pos)
|
|
||||||
(use-literal-ordering-with-hyperresolution 'literal-ordering-p)
|
|
||||||
(use-literal-ordering-with-paramodulation 'literal-ordering-p)
|
|
||||||
(ordering-functions>constants t)
|
|
||||||
(assert-context :current)
|
|
||||||
(run-time-limit $runtimelimit)
|
|
||||||
(listen-for-commands nil)
|
|
||||||
(use-closure-when-satisfiable t)
|
|
||||||
(print-rows-when-given nil)
|
|
||||||
(print-rows-when-derived nil)
|
|
||||||
(print-unorientable-rows nil)
|
|
||||||
(print-row-wffs-prettily nil)
|
|
||||||
(print-final-rows :tptp) ;System on TPTP uses value :tptp
|
|
||||||
(print-options-when-starting nil) ;System on TPTP uses this
|
|
||||||
(use-variable-name-sorts nil)
|
|
||||||
(use-purity-test t)
|
|
||||||
(use-relevance-test t)
|
|
||||||
(declare-tptp-symbols1)
|
|
||||||
(declare-tptp-symbols2)
|
|
||||||
))
|
|
||||||
|
|
||||||
(setf *tptp-environment-variable* "$TPTP")
|
|
||||||
(refute-file "$1" :options snark-tptp-options :format :tptp)
|
|
||||||
|
|
||||||
(quit)
|
|
||||||
ENDOFSTDIN
|
|
||||||
|
|
Binary file not shown.
|
@ -1,256 +0,0 @@
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
(defun snark-verbose ()
|
|
||||||
(snark:print-options-when-starting nil)
|
|
||||||
(snark:print-agenda-when-finished nil)
|
|
||||||
(snark:print-clocks-when-finished t)
|
|
||||||
(snark:print-final-rows nil)
|
|
||||||
(snark:print-symbol-table-warnings nil)
|
|
||||||
(snark:print-summary-when-finished t)
|
|
||||||
(snark:print-row-answers nil)
|
|
||||||
(snark:print-row-goals nil)
|
|
||||||
(snark:print-rows-when-derived nil)
|
|
||||||
(snark:print-row-reasons nil)
|
|
||||||
(snark:print-row-partitions nil)
|
|
||||||
(snark:print-rows-prettily nil)
|
|
||||||
(snark:print-rows :min 0 :max 0))
|
|
||||||
|
|
||||||
|
|
||||||
(defun temp-sorts ()
|
|
||||||
(snark:declare-sort 'Room)
|
|
||||||
(snark:declare-sort 'Door)
|
|
||||||
(snark:declare-sort 'Agent)
|
|
||||||
(snark:declare-sort 'Name)
|
|
||||||
|
|
||||||
|
|
||||||
(snark:declare-subsort 'Robot 'Agent :subsorts-incompatible t)
|
|
||||||
(snark:declare-subsort 'Person 'Agent :subsorts-incompatible t)
|
|
||||||
(snark:declare-subsort 'Commander 'Person :subsorts-incompatible t)
|
|
||||||
(snark:declare-subsort 'Prisoner 'Person :subsorts-incompatible t)
|
|
||||||
|
|
||||||
(snark:declare-constant 'guard :sort 'Robot)
|
|
||||||
(snark:declare-constant 'guide :sort 'Robot)
|
|
||||||
(snark:declare-constant 'commander :sort 'Commander)
|
|
||||||
(snark:declare-constant 'prisoner :sort 'Prisoner)
|
|
||||||
|
|
||||||
(snark:declare-constant 'room1 :sort 'Room)
|
|
||||||
(snark:declare-constant 'room2 :sort 'Room)
|
|
||||||
(snark:declare-constant 'hallway :sort 'Room)
|
|
||||||
(snark:declare-constant 'accompany :sort 'Name)
|
|
||||||
|
|
||||||
(snark:declare-function 'door 1 :sort '(Door Room))
|
|
||||||
|
|
||||||
(snark:declare-relation 'robot 1 :sort '(Robot))
|
|
||||||
(snark:declare-relation 'room 1 :sort '(Room))
|
|
||||||
(snark:declare-relation 'person 1 :sort '(Person))
|
|
||||||
(snark:declare-relation 'commander 1 :sort '(Commander))
|
|
||||||
(snark:declare-relation 'prisoner 1 :sort '(Prisoner))
|
|
||||||
|
|
||||||
(snark:declare-relation 'in 2 :sort '(Agent Room))
|
|
||||||
(snark:declare-relation 'sameroom 2 :sort '(Agent Agent))
|
|
||||||
|
|
||||||
(snark:declare-relation 'interrogate 2 :sort '(Agent Agent))
|
|
||||||
|
|
||||||
(snark:declare-relation 'can 4 :sort '(Name Agent Agent Agent))
|
|
||||||
|
|
||||||
|
|
||||||
(snark:declare-relation 'accompanies 2 :sort '(Agent Agent))
|
|
||||||
(snark:declare-relation 'open 1 :sort '(Door))
|
|
||||||
|
|
||||||
|
|
||||||
(snark:declare-variable '?room :sort 'Room)
|
|
||||||
(snark:declare-variable '?room1 :sort 'Room)
|
|
||||||
(snark:declare-variable '?room2 :sort 'Room)
|
|
||||||
|
|
||||||
(snark:declare-variable '?person :sort 'Person)
|
|
||||||
(snark:declare-variable '?person1 :sort 'Person)
|
|
||||||
(snark:declare-variable '?person2 :sort 'Person)
|
|
||||||
|
|
||||||
(snark:declare-variable '?actor :sort 'Agent)
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
)
|
|
||||||
(defun snark-deverbose ()
|
|
||||||
(snark:print-options-when-starting nil)
|
|
||||||
(snark:print-agenda-when-finished nil)
|
|
||||||
(snark:print-clocks-when-finished nil)
|
|
||||||
(snark:print-final-rows nil)
|
|
||||||
(snark:print-symbol-table-warnings nil)
|
|
||||||
(snark:print-summary-when-finished nil)
|
|
||||||
(snark:print-row-answers nil)
|
|
||||||
(snark:print-row-goals nil)
|
|
||||||
(snark:print-rows-when-derived nil)
|
|
||||||
(snark:print-row-reasons nil)
|
|
||||||
(snark:print-row-partitions nil)
|
|
||||||
(snark:print-rows-prettily nil)
|
|
||||||
(snark:print-rows :min 0 :max 0))
|
|
||||||
|
|
||||||
(defun setup-snark (&key (time-limit 5) (verbose nil))
|
|
||||||
(snark:initialize :verbose verbose)
|
|
||||||
(if (not verbose) (snark-deverbose) )
|
|
||||||
(snark:run-time-limit 5)
|
|
||||||
(snark:assert-supported t)
|
|
||||||
(snark:assume-supported t)
|
|
||||||
(snark:prove-supported t)
|
|
||||||
(snark:use-hyperresolution t)
|
|
||||||
(snark:use-paramodulation t)
|
|
||||||
(snark:use-term-ordering :recursive-path)
|
|
||||||
(snark:use-simplification-by-equalities t)
|
|
||||||
(snark::declare-code-for-lists)
|
|
||||||
|
|
||||||
(snark:allow-skolem-symbols-in-answers nil))
|
|
||||||
|
|
||||||
(defun row-formula (name))
|
|
||||||
|
|
||||||
|
|
||||||
(defun !@ (x)
|
|
||||||
"reading logic forms with the symbols in the correct package"
|
|
||||||
(let ((*package* (find-package :snark)))
|
|
||||||
(read-from-string (princ-to-string x))))
|
|
||||||
|
|
||||||
(defun @! (x)
|
|
||||||
"undo the above"
|
|
||||||
(let ((*package* (find-package :cl-user)))
|
|
||||||
(read-from-string (princ-to-string x))))
|
|
||||||
|
|
||||||
|
|
||||||
(defun prove-from-axioms (all-axioms f
|
|
||||||
&key
|
|
||||||
(time-limit 5)
|
|
||||||
(verbose nil)
|
|
||||||
sortal-setup-fn)
|
|
||||||
(let ((axioms (remove-duplicates all-axioms :test #'equalp)))
|
|
||||||
(setup-snark :time-limit time-limit :verbose verbose)
|
|
||||||
(if sortal-setup-fn (funcall sortal-setup-fn))
|
|
||||||
(let* ((n-a (make-hash-table :test #'equalp))
|
|
||||||
(a-n (make-hash-table :test #'equalp))
|
|
||||||
)
|
|
||||||
(mapcar (lambda (axiom)
|
|
||||||
(let ((name (gensym)))
|
|
||||||
(setf (gethash (princ-to-string axiom) a-n) name)
|
|
||||||
(setf (gethash (princ-to-string name) n-a) axiom))) axioms)
|
|
||||||
(mapcar (lambda (axiom)
|
|
||||||
(snark::assert axiom))
|
|
||||||
(mapcar #'!@ axioms))
|
|
||||||
(if (equalp :PROOF-FOUND (snark:prove (!@ f)))
|
|
||||||
(list t (remove nil
|
|
||||||
(mapcar
|
|
||||||
(lambda (row reason)
|
|
||||||
(if (equalp reason 'snark::ASSERTION)
|
|
||||||
(gethash (princ-to-string (snark:row-name row)) n-a )))
|
|
||||||
(snark:row-ancestry (snark:proof))
|
|
||||||
(mapcar 'snark:row-reason (snark:row-ancestry (snark:proof))))))
|
|
||||||
(list nil nil)))))
|
|
||||||
|
|
||||||
|
|
||||||
(defun prove-from-axioms-yes-no (all-axioms f
|
|
||||||
&key
|
|
||||||
(time-limit 5)
|
|
||||||
(verbose nil)
|
|
||||||
sortal-setup-fn)
|
|
||||||
(let ((axioms (remove-duplicates all-axioms :test #'equalp)))
|
|
||||||
(setup-snark :time-limit time-limit :verbose verbose)
|
|
||||||
(if sortal-setup-fn (funcall sortal-setup-fn))
|
|
||||||
(let* ((n-a (make-hash-table :test #'equalp))
|
|
||||||
(a-n (make-hash-table :test #'equalp)))
|
|
||||||
(mapcar (lambda (axiom)
|
|
||||||
(let ((name (gensym)))
|
|
||||||
(setf (gethash (princ-to-string axiom) a-n) name)
|
|
||||||
(setf (gethash (princ-to-string name) n-a) axiom))) axioms)
|
|
||||||
(mapcar (lambda (axiom)
|
|
||||||
(snark::assert axiom))
|
|
||||||
(mapcar #'!@ axioms))
|
|
||||||
(if (equalp :PROOF-FOUND (snark:prove (!@ f)))
|
|
||||||
"YES"
|
|
||||||
"NO"))))
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
(defun prove-from-axioms-and-get-answer (all-axioms f var
|
|
||||||
&key
|
|
||||||
(time-limit 5)
|
|
||||||
(verbose nil)
|
|
||||||
sortal-setup-fn)
|
|
||||||
(let ((axioms (remove-duplicates all-axioms :test #'equalp)))
|
|
||||||
(setup-snark :time-limit time-limit :verbose verbose)
|
|
||||||
(if sortal-setup-fn (funcall sortal-setup-fn))
|
|
||||||
(let* ((n-a (make-hash-table :test #'equalp))
|
|
||||||
(a-n (make-hash-table :test #'equalp)))
|
|
||||||
(mapcar (lambda (axiom)
|
|
||||||
(let ((name (gensym)))
|
|
||||||
(setf (gethash (princ-to-string axiom) a-n) name)
|
|
||||||
(setf (gethash (princ-to-string name) n-a) axiom))) axioms)
|
|
||||||
(mapcar (lambda (axiom)
|
|
||||||
(snark::assert axiom))
|
|
||||||
(mapcar #'!@ axioms))
|
|
||||||
|
|
||||||
(let ((proof (snark:prove (!@ f) :answer (!@ (list 'ans var)) )))
|
|
||||||
(if (equalp :PROOF-FOUND proof)
|
|
||||||
(string-downcase (princ-to-string (@! (second (snark:answer proof) ))))
|
|
||||||
"")))))
|
|
||||||
|
|
||||||
|
|
||||||
(defun get-answer-string (proof)
|
|
||||||
(string-downcase (princ-to-string (@! (rest (snark:answer proof))))))
|
|
||||||
|
|
||||||
(defun prove-from-axioms-and-get-answers (all-axioms f vars
|
|
||||||
&key
|
|
||||||
(time-limit 5)
|
|
||||||
(verbose nil)
|
|
||||||
sortal-setup-fn)
|
|
||||||
(let ((axioms (remove-duplicates all-axioms :test #'equalp)))
|
|
||||||
(setup-snark :time-limit time-limit :verbose verbose)
|
|
||||||
(if sortal-setup-fn (funcall sortal-setup-fn))
|
|
||||||
(let* ((n-a (make-hash-table :test #'equalp))
|
|
||||||
(a-n (make-hash-table :test #'equalp)))
|
|
||||||
(mapcar (lambda (axiom)
|
|
||||||
(let ((name (gensym)))
|
|
||||||
(setf (gethash (princ-to-string axiom) a-n) name)
|
|
||||||
(setf (gethash (princ-to-string name) n-a) axiom))) axioms)
|
|
||||||
(mapcar (lambda (axiom)
|
|
||||||
(snark::assert axiom))
|
|
||||||
(mapcar #'!@ axioms))
|
|
||||||
|
|
||||||
(let ((proof (snark:prove (!@ f) :answer (!@ (cons 'ans vars)) )))
|
|
||||||
|
|
||||||
(if (equalp :PROOF-FOUND proof)
|
|
||||||
(get-answer-string proof)
|
|
||||||
"")))))
|
|
||||||
|
|
||||||
(defun prove-from-axioms-and-get-multiple-answers (all-axioms f vars
|
|
||||||
&key
|
|
||||||
(time-limit 5)
|
|
||||||
(verbose nil)
|
|
||||||
sortal-setup-fn)
|
|
||||||
(let ((axioms (remove-duplicates all-axioms :test #'equalp)))
|
|
||||||
(setup-snark :time-limit time-limit :verbose verbose)
|
|
||||||
(if sortal-setup-fn (funcall sortal-setup-fn))
|
|
||||||
(let* ((n-a (make-hash-table :test #'equalp))
|
|
||||||
(a-n (make-hash-table :test #'equalp)))
|
|
||||||
(mapcar (lambda (axiom)
|
|
||||||
(let ((name (gensym)))
|
|
||||||
(setf (gethash (princ-to-string axiom) a-n) name)
|
|
||||||
(setf (gethash (princ-to-string name) n-a) axiom))) axioms)
|
|
||||||
(mapcar (lambda (axiom)
|
|
||||||
(snark::assert axiom))
|
|
||||||
(mapcar #'!@ axioms))
|
|
||||||
|
|
||||||
(let ((proof (snark:prove (!@ f) :answer (!@ (cons 'ans vars)) )))
|
|
||||||
|
|
||||||
(if (equalp :PROOF-FOUND proof)
|
|
||||||
(princ-to-string (cons (get-answer-string proof) (call)))
|
|
||||||
"")))))
|
|
||||||
|
|
||||||
(defun call ()
|
|
||||||
(let ((proof (snark:closure)))
|
|
||||||
(if (equalp :PROOF-FOUND proof)
|
|
||||||
(cons (get-answer-string proof) (call))
|
|
||||||
())))
|
|
||||||
|
|
||||||
(defun proved? (ans) (first ans))
|
|
||||||
(defun used-premises (ans) (second ans))
|
|
||||||
(defun consistent? (statements time)
|
|
||||||
(not (prove-from-axioms statements '(and P (not P)) :time-limit time)))
|
|
|
@ -1,160 +0,0 @@
|
||||||
;;; -*- Mode: Lisp; Syntax: Common-Lisp; Package: common-lisp-user -*-
|
|
||||||
;;; File: snark-system.lisp
|
|
||||||
;;; The contents of this file are subject to the Mozilla Public License
|
|
||||||
;;; Version 1.1 (the "License"); you may not use this file except in
|
|
||||||
;;; compliance with the License. You may obtain a copy of the License at
|
|
||||||
;;; http://www.mozilla.org/MPL/
|
|
||||||
;;;
|
|
||||||
;;; Software distributed under the License is distributed on an "AS IS"
|
|
||||||
;;; basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the
|
|
||||||
;;; License for the specific language governing rights and limitations
|
|
||||||
;;; under the License.
|
|
||||||
;;;
|
|
||||||
;;; The Original Code is SNARK.
|
|
||||||
;;; The Initial Developer of the Original Code is SRI International.
|
|
||||||
;;; Portions created by the Initial Developer are Copyright (C) 1981-2012.
|
|
||||||
;;; All Rights Reserved.
|
|
||||||
;;;
|
|
||||||
;;; Contributor(s): Mark E. Stickel <stickel@ai.sri.com>.
|
|
||||||
|
|
||||||
(in-package :common-lisp-user)
|
|
||||||
|
|
||||||
;;; load files from the same directory that this file was loaded from
|
|
||||||
|
|
||||||
(defparameter *snark-system-pathname* *load-truename*)
|
|
||||||
|
|
||||||
(defparameter *snark-files2*
|
|
||||||
'("loads"
|
|
||||||
"lisp-system"
|
|
||||||
"deque-system"
|
|
||||||
"sparse-array-system"
|
|
||||||
"numbering-system"
|
|
||||||
"agenda-system"
|
|
||||||
"infix-reader-system"
|
|
||||||
"feature-system"
|
|
||||||
"dpll-system"
|
|
||||||
"snark-pkg"))
|
|
||||||
|
|
||||||
(defparameter *snark-files*
|
|
||||||
'("useful"
|
|
||||||
"posets"
|
|
||||||
"solve-sum"
|
|
||||||
"globals"
|
|
||||||
"options"
|
|
||||||
"terms2"
|
|
||||||
"rows"
|
|
||||||
"row-contexts"
|
|
||||||
"constants"
|
|
||||||
"functions"
|
|
||||||
"variables"
|
|
||||||
"subst"
|
|
||||||
"substitute"
|
|
||||||
"symbol-table2"
|
|
||||||
"symbol-definitions"
|
|
||||||
"assertion-analysis"
|
|
||||||
"jepd-relations-tables" "jepd-relations" "date-reasoning2"
|
|
||||||
"constraints"
|
|
||||||
;; "constraint-purify"
|
|
||||||
"connectives"
|
|
||||||
"wffs"
|
|
||||||
;; "equality-elimination2"
|
|
||||||
"nonhorn-magic-set"
|
|
||||||
"dp-refute"
|
|
||||||
"sorts-functions"
|
|
||||||
"sorts-interface"
|
|
||||||
"sorts"
|
|
||||||
"argument-bag-ac"
|
|
||||||
"argument-list-a1"
|
|
||||||
"unify"
|
|
||||||
"unify-bag" "subsume-bag"
|
|
||||||
"unify-vector"
|
|
||||||
"equal"
|
|
||||||
"variant"
|
|
||||||
"alists"
|
|
||||||
"term-hash"
|
|
||||||
"trie-index"
|
|
||||||
"path-index"
|
|
||||||
"trie" "feature-vector" "feature-vector-trie" "feature-vector-index"
|
|
||||||
"term-memory"
|
|
||||||
;; "instance-graph" "instance-graph2"
|
|
||||||
"weight"
|
|
||||||
"eval"
|
|
||||||
"input"
|
|
||||||
"output"
|
|
||||||
"simplification-ordering"
|
|
||||||
"symbol-ordering"
|
|
||||||
"multiset-ordering"
|
|
||||||
"recursive-path-ordering" "ac-rpo"
|
|
||||||
"knuth-bendix-ordering2"
|
|
||||||
"rewrite"
|
|
||||||
"rewrite-code"
|
|
||||||
"code-for-strings2"
|
|
||||||
"code-for-numbers3"
|
|
||||||
"code-for-lists2"
|
|
||||||
"code-for-bags4"
|
|
||||||
"resolve-code"
|
|
||||||
"resolve-code-tables"
|
|
||||||
"main"
|
|
||||||
"subsume" "subsume-clause"
|
|
||||||
"assertion-file"
|
|
||||||
"tptp"
|
|
||||||
"tptp-symbols"
|
|
||||||
"coder"
|
|
||||||
("examples" "overbeek-test")
|
|
||||||
("examples" "front-last-example")
|
|
||||||
("examples" "steamroller-example")
|
|
||||||
("examples" "reverse-example")
|
|
||||||
("examples" "hot-drink-example")
|
|
||||||
("examples" "coder-examples")
|
|
||||||
("examples" "latin-squares")
|
|
||||||
"patches"
|
|
||||||
))
|
|
||||||
|
|
||||||
(defvar *compile-me* nil)
|
|
||||||
|
|
||||||
(defun make-snark-system (&optional (*compile-me* *compile-me*))
|
|
||||||
(pushnew :snark *features*)
|
|
||||||
#+cmu (setf extensions::*gc-verbose* nil)
|
|
||||||
(when (eq *compile-me* :optimize)
|
|
||||||
(proclaim (print '(optimize (safety 1) (space 1) (speed 3) (debug 1)))))
|
|
||||||
(with-compilation-unit ()
|
|
||||||
(dolist (name *snark-files2*)
|
|
||||||
(let* ((dir (if (consp name)
|
|
||||||
(append (pathname-directory *snark-system-pathname*) (butlast name))
|
|
||||||
(append (pathname-directory *snark-system-pathname*) (list "src"))))
|
|
||||||
(name (if (consp name) (first (last name)) name))
|
|
||||||
(file (make-pathname :directory dir :name name :defaults *snark-system-pathname*)))
|
|
||||||
(load file)))
|
|
||||||
(setf *package* (find-package :snark))
|
|
||||||
#+gcl (shadow '(#:assert #:substitute #:variable))
|
|
||||||
(dolist (name *snark-files*)
|
|
||||||
(let* ((dir (if (consp name)
|
|
||||||
(append (pathname-directory *snark-system-pathname*) (butlast name))
|
|
||||||
(append (pathname-directory *snark-system-pathname*) (list "src"))))
|
|
||||||
(name (if (consp name) (first (last name)) name))
|
|
||||||
(file (make-pathname :directory dir :name name :defaults *snark-system-pathname*)))
|
|
||||||
(load (if *compile-me*
|
|
||||||
(compile-file file)
|
|
||||||
(or (probe-file (compile-file-pathname file)) file))))))
|
|
||||||
;;#-(or symbolics mcl) (load "/home/pacific1/stickel/spice/build.lisp")
|
|
||||||
(setf *package* (find-package :snark-user))
|
|
||||||
(setf *print-pretty* nil)
|
|
||||||
#+openmcl (egc nil)
|
|
||||||
(funcall (intern (symbol-name :initialize) :snark)))
|
|
||||||
|
|
||||||
#+ignore
|
|
||||||
(defun fix-snark-files ()
|
|
||||||
(let ((dir (pathname-directory cl-user::*snark-system-pathname*)))
|
|
||||||
(dolist (x (append
|
|
||||||
(directory
|
|
||||||
(make-pathname :directory (append dir (list "src")) :name :wild :type "lisp"))
|
|
||||||
(directory
|
|
||||||
(make-pathname :directory (append dir (list "Private")) :name :wild :type "lisp"))
|
|
||||||
(directory
|
|
||||||
(make-pathname :directory (append dir (list "examples")) :name :wild :type "lisp"))
|
|
||||||
(directory
|
|
||||||
(make-pathname :directory (append dir (list "examples")) :name :wild :type "kif"))))
|
|
||||||
(ccl:set-mac-file-type x :text)
|
|
||||||
(ccl:set-mac-file-creator x :ccl2))))
|
|
||||||
|
|
||||||
;;; snark-system.lisp EOF
|
|
Binary file not shown.
|
@ -1,304 +0,0 @@
|
||||||
;;; -*- Mode: Lisp; Syntax: Common-Lisp; Package: snark -*-
|
|
||||||
;;; File: ac-rpo.lisp
|
|
||||||
;;; The contents of this file are subject to the Mozilla Public License
|
|
||||||
;;; Version 1.1 (the "License"); you may not use this file except in
|
|
||||||
;;; compliance with the License. You may obtain a copy of the License at
|
|
||||||
;;; http://www.mozilla.org/MPL/
|
|
||||||
;;;
|
|
||||||
;;; Software distributed under the License is distributed on an "AS IS"
|
|
||||||
;;; basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the
|
|
||||||
;;; License for the specific language governing rights and limitations
|
|
||||||
;;; under the License.
|
|
||||||
;;;
|
|
||||||
;;; The Original Code is SNARK.
|
|
||||||
;;; The Initial Developer of the Original Code is SRI International.
|
|
||||||
;;; Portions created by the Initial Developer are Copyright (C) 1981-2010.
|
|
||||||
;;; All Rights Reserved.
|
|
||||||
;;;
|
|
||||||
;;; Contributor(s): Mark E. Stickel <stickel@ai.sri.com>.
|
|
||||||
|
|
||||||
(in-package :snark)
|
|
||||||
|
|
||||||
;;; recursive-path-ordering extensions for Rubio's "A fully syntactic AC-RPO"
|
|
||||||
|
|
||||||
(defun ac-rpo-compare-compounds (fn xargs yargs subst)
|
|
||||||
(or (ac-rpo-cache-lookup fn xargs yargs)
|
|
||||||
(ac-rpo-cache-store fn xargs yargs (ac-rpo-compare-compounds* fn xargs yargs subst))))
|
|
||||||
|
|
||||||
(defun ac-rpo-compare-compounds* (fn xargs yargs subst)
|
|
||||||
(let ((com1 nil) (com2 nil) (com3 nil) (com4 nil)
|
|
||||||
(always-> t) (always-< t)
|
|
||||||
big-head-of-x no-small-head-of-x
|
|
||||||
big-head-of-y no-small-head-of-y)
|
|
||||||
(when (and (eq '= (setf com1 (compare-argument-counts xargs yargs subst)))
|
|
||||||
(eq '= (compare-term-multisets #'rpo-compare-terms xargs yargs subst '=)))
|
|
||||||
(return-from ac-rpo-compare-compounds* '=))
|
|
||||||
(dolist (yargs1 (emb-no-big fn yargs subst))
|
|
||||||
(case (ac-rpo-compare-compounds fn xargs yargs1 subst)
|
|
||||||
(?
|
|
||||||
(setf always-> nil))
|
|
||||||
((< =)
|
|
||||||
(return-from ac-rpo-compare-compounds* '<))))
|
|
||||||
(when always->
|
|
||||||
(setf (values big-head-of-x no-small-head-of-x)
|
|
||||||
(big-head-and-no-small-head fn xargs subst))
|
|
||||||
(setf (values big-head-of-y no-small-head-of-y)
|
|
||||||
(big-head-and-no-small-head fn yargs subst))
|
|
||||||
(when (and (case (setf com4 (compare-no-small-heads fn no-small-head-of-x no-small-head-of-y subst nil))
|
|
||||||
((> =)
|
|
||||||
t))
|
|
||||||
(or (eq '> com1)
|
|
||||||
(eq '> (setf com2 (compare-term-multisets #'rpo-compare-terms big-head-of-x big-head-of-y subst nil)))
|
|
||||||
(case com1
|
|
||||||
((>= =)
|
|
||||||
(cond
|
|
||||||
((and (eq big-head-of-y yargs) (eq '> com2))
|
|
||||||
t)
|
|
||||||
((and (eq big-head-of-x xargs) (neq '> com2))
|
|
||||||
nil)
|
|
||||||
((and (eq big-head-of-x xargs) (eq big-head-of-y yargs))
|
|
||||||
(eq '> com2))
|
|
||||||
(t
|
|
||||||
(eq '> (setf com3 (compare-term-multisets #'rpo-compare-terms xargs yargs subst nil)))))))))
|
|
||||||
(return-from ac-rpo-compare-compounds* '>)))
|
|
||||||
(dolist (xargs1 (emb-no-big fn xargs subst))
|
|
||||||
(case (ac-rpo-compare-compounds fn xargs1 yargs subst)
|
|
||||||
(?
|
|
||||||
(setf always-< nil))
|
|
||||||
((> =)
|
|
||||||
(return-from ac-rpo-compare-compounds* '>))))
|
|
||||||
(when always-<
|
|
||||||
(unless always->
|
|
||||||
(setf (values big-head-of-x no-small-head-of-x)
|
|
||||||
(big-head-and-no-small-head fn xargs subst))
|
|
||||||
(setf (values big-head-of-y no-small-head-of-y)
|
|
||||||
(big-head-and-no-small-head fn yargs subst)))
|
|
||||||
(when (and (case (or com4 (compare-no-small-heads fn no-small-head-of-x no-small-head-of-y subst nil))
|
|
||||||
((< =)
|
|
||||||
t))
|
|
||||||
(or (eq '< com1)
|
|
||||||
(eq '< (or com2 (setf com2 (compare-term-multisets #'rpo-compare-terms big-head-of-x big-head-of-y subst nil))))
|
|
||||||
(case com1
|
|
||||||
((<= =)
|
|
||||||
(cond
|
|
||||||
((and (eq big-head-of-x xargs) (eq '< com2))
|
|
||||||
t)
|
|
||||||
((and (eq big-head-of-y yargs) (neq '< com2))
|
|
||||||
nil)
|
|
||||||
((and (eq big-head-of-x xargs) (eq big-head-of-y yargs))
|
|
||||||
(eq '< com2))
|
|
||||||
(t
|
|
||||||
(eq '< (or com3 (compare-term-multisets #'rpo-compare-terms xargs yargs subst '<)))))))))
|
|
||||||
(return-from ac-rpo-compare-compounds* '<)))
|
|
||||||
'?))
|
|
||||||
|
|
||||||
(defun emb-no-big (fn args subst)
|
|
||||||
;; defn 12
|
|
||||||
(let ((revargs nil) (result nil) result-last)
|
|
||||||
(dotails (args args)
|
|
||||||
(let ((argi (first args)))
|
|
||||||
(when (dereference argi subst :if-compound (neq '> (symbol-ordering-compare (head argi) fn)))
|
|
||||||
(dolist (argij (args argi))
|
|
||||||
(collect (revappend
|
|
||||||
revargs
|
|
||||||
(dereference
|
|
||||||
argij subst
|
|
||||||
:if-variable (cons argij (rest args))
|
|
||||||
:if-constant (cons argij (rest args))
|
|
||||||
:if-compound (if (eq fn (head argij))
|
|
||||||
(append (flatargs argij subst) (rest args))
|
|
||||||
(cons argij (rest args)))))
|
|
||||||
result)))
|
|
||||||
(push argi revargs)))
|
|
||||||
result))
|
|
||||||
|
|
||||||
(defun big-head-and-no-small-head (fn args subst)
|
|
||||||
;; defn 2: big-head is multiset of arguments for which (> (top arg) fn)
|
|
||||||
;; defn 7: no-small-head is multiset of arguments for which (not (< (top arg) fn))
|
|
||||||
(labels
|
|
||||||
((big-head-and-no-small-head* (args)
|
|
||||||
(if (null args)
|
|
||||||
(values nil nil)
|
|
||||||
(let* ((l (rest args))
|
|
||||||
(arg (first args))
|
|
||||||
(com (dereference
|
|
||||||
arg subst
|
|
||||||
:if-variable '?
|
|
||||||
:if-constant (symbol-ordering-compare arg fn)
|
|
||||||
:if-compound (symbol-ordering-compare (head arg) fn))))
|
|
||||||
(mvlet (((values big-head no-small-head) (big-head-and-no-small-head* l)))
|
|
||||||
(values (if (eq '> com)
|
|
||||||
(if (eq big-head l) args (cons arg big-head))
|
|
||||||
big-head)
|
|
||||||
(if (neq '< com)
|
|
||||||
(if (eq no-small-head l) args (cons arg no-small-head))
|
|
||||||
no-small-head)))))))
|
|
||||||
(big-head-and-no-small-head* args)))
|
|
||||||
|
|
||||||
(defun compare-no-small-heads (fn no-small-head-of-x no-small-head-of-y subst testval)
|
|
||||||
;; defn 11 comparison function adds the following
|
|
||||||
;; conditions to the usual comparison
|
|
||||||
;; (> compound compound') : (or (> (head compound) fn) (>= (head compound) (head compound'))
|
|
||||||
;; (> constant compound) : (or (> constant fn) (> constant (head compound)))
|
|
||||||
;; (> compound constant) : (or (> (head compound) fn) (> (head compound) constant))
|
|
||||||
;; (> compound variable) : (> (head compound) fn)
|
|
||||||
(labels
|
|
||||||
((compare (x y subst testval)
|
|
||||||
(dereference2
|
|
||||||
x y subst
|
|
||||||
:if-variable*variable (if (eq x y) '= '?)
|
|
||||||
:if-variable*constant '?
|
|
||||||
:if-constant*variable '?
|
|
||||||
:if-constant*constant (symbol-ordering-compare x y)
|
|
||||||
:if-compound*variable (if (eq '> (symbol-ordering-compare (head x) fn)) (rpo-compare-compound*variable x y subst testval) '?)
|
|
||||||
:if-variable*compound (if (eq '> (symbol-ordering-compare (head y) fn)) (rpo-compare-variable*compound x y subst testval) '?)
|
|
||||||
:if-compound*constant (ecase testval
|
|
||||||
(>
|
|
||||||
(and (or (eq '> (symbol-ordering-compare (head x) fn))
|
|
||||||
(eq '> (symbol-ordering-compare (head x) y)))
|
|
||||||
(rpo-compare-compound*constant x y subst testval)))
|
|
||||||
(<
|
|
||||||
(and (or (eq '> (symbol-ordering-compare y fn))
|
|
||||||
(eq '> (symbol-ordering-compare y (head x))))
|
|
||||||
(rpo-compare-compound*constant x y subst testval)))
|
|
||||||
((nil)
|
|
||||||
(ecase (rpo-compare-compound*constant x y subst testval)
|
|
||||||
(>
|
|
||||||
(if (or (eq '> (symbol-ordering-compare (head x) fn))
|
|
||||||
(eq '> (symbol-ordering-compare (head x) y)))
|
|
||||||
'>
|
|
||||||
'?))
|
|
||||||
(<
|
|
||||||
(if (or (eq '> (symbol-ordering-compare y fn))
|
|
||||||
(eq '> (symbol-ordering-compare y (head x))))
|
|
||||||
'<
|
|
||||||
'?))
|
|
||||||
(?
|
|
||||||
'?))))
|
|
||||||
:if-constant*compound (opposite-order (compare y x subst (opposite-order testval)))
|
|
||||||
:if-compound*compound (ecase testval
|
|
||||||
(=
|
|
||||||
(rpo-compare-compounds x y subst testval))
|
|
||||||
(>
|
|
||||||
(and (or (eq '> (symbol-ordering-compare (head x) fn))
|
|
||||||
(case (symbol-ordering-compare (head x) (head y))
|
|
||||||
((> =)
|
|
||||||
t)))
|
|
||||||
(rpo-compare-compounds x y subst testval)))
|
|
||||||
(<
|
|
||||||
(and (or (eq '> (symbol-ordering-compare (head y) fn))
|
|
||||||
(case (symbol-ordering-compare (head y) (head x))
|
|
||||||
((> =)
|
|
||||||
t)))
|
|
||||||
(rpo-compare-compounds x y subst testval)))
|
|
||||||
((nil)
|
|
||||||
(ecase (rpo-compare-compounds x y subst testval)
|
|
||||||
(>
|
|
||||||
(if (or (eq '> (symbol-ordering-compare (head x) fn))
|
|
||||||
(case (symbol-ordering-compare (head x) (head y))
|
|
||||||
((> =)
|
|
||||||
t)))
|
|
||||||
'>
|
|
||||||
'?))
|
|
||||||
(<
|
|
||||||
(if (or (eq '> (symbol-ordering-compare (head y) fn))
|
|
||||||
(case (symbol-ordering-compare (head y) (head x))
|
|
||||||
((> =)
|
|
||||||
t)))
|
|
||||||
'<
|
|
||||||
'?))
|
|
||||||
(=
|
|
||||||
'=) ;this added case is the only change in version 20090905r007
|
|
||||||
(?
|
|
||||||
'?)))))))
|
|
||||||
(compare-term-multisets #'compare no-small-head-of-x no-small-head-of-y subst testval)))
|
|
||||||
|
|
||||||
(defun compare-argument-counts (xargs yargs subst)
|
|
||||||
;; xargs.subst and yargs.subst are already flattened argument lists
|
|
||||||
;; of the same associative function
|
|
||||||
;; this is the AC-RPO comparison of #(x) and #(y) that returns
|
|
||||||
;; =, >, <, >=, =<, or ?
|
|
||||||
(let ((variable-counts nil) (variable-count 0) (nonvariable-count 0))
|
|
||||||
(labels
|
|
||||||
((count-arguments (args inc)
|
|
||||||
(declare (fixnum inc))
|
|
||||||
(let (v)
|
|
||||||
(dolist (term args)
|
|
||||||
(dereference
|
|
||||||
term subst
|
|
||||||
:if-variable (cond
|
|
||||||
((null variable-counts)
|
|
||||||
(setf variable-counts (cons (make-tc term inc) nil)))
|
|
||||||
((setf v (assoc/eq term variable-counts))
|
|
||||||
(incf (tc-count v) inc))
|
|
||||||
(t
|
|
||||||
(push (make-tc term inc) variable-counts)))
|
|
||||||
:if-constant (incf nonvariable-count inc)
|
|
||||||
:if-compound (incf nonvariable-count inc))))))
|
|
||||||
(count-arguments xargs 1)
|
|
||||||
(count-arguments yargs -1)
|
|
||||||
(dolist (v variable-counts)
|
|
||||||
(let ((c (tc-count v)))
|
|
||||||
(cond
|
|
||||||
((plusp c)
|
|
||||||
(if (minusp variable-count)
|
|
||||||
(return-from compare-argument-counts '?)
|
|
||||||
(incf variable-count c)))
|
|
||||||
((minusp c)
|
|
||||||
(if (plusp variable-count)
|
|
||||||
(return-from compare-argument-counts '?)
|
|
||||||
(incf variable-count c))))))
|
|
||||||
(cond
|
|
||||||
((plusp variable-count)
|
|
||||||
(cond
|
|
||||||
((minusp nonvariable-count)
|
|
||||||
(let ((d (+ variable-count nonvariable-count)))
|
|
||||||
(cond
|
|
||||||
((eql 0 d)
|
|
||||||
'>=)
|
|
||||||
((plusp d)
|
|
||||||
'>)
|
|
||||||
(t
|
|
||||||
'?))))
|
|
||||||
(t
|
|
||||||
'>)))
|
|
||||||
((minusp variable-count)
|
|
||||||
(cond
|
|
||||||
((plusp nonvariable-count)
|
|
||||||
(let ((d (+ variable-count nonvariable-count)))
|
|
||||||
(cond
|
|
||||||
((eql 0 d)
|
|
||||||
'=<)
|
|
||||||
((minusp d)
|
|
||||||
'<)
|
|
||||||
(t
|
|
||||||
'?))))
|
|
||||||
(t
|
|
||||||
'<)))
|
|
||||||
((eql 0 nonvariable-count)
|
|
||||||
'=)
|
|
||||||
(t
|
|
||||||
(if (plusp nonvariable-count) '> '<))))))
|
|
||||||
|
|
||||||
(defun ac-rpo-cache-lookup (fn xargs yargs)
|
|
||||||
(dolist (x *ac-rpo-cache* nil)
|
|
||||||
(when (and (eq fn (first x))
|
|
||||||
(eql-list xargs (first (setf x (rest x))))
|
|
||||||
(eql-list yargs (first (setf x (rest x)))))
|
|
||||||
(return (first (rest x))))))
|
|
||||||
|
|
||||||
(defun ac-rpo-cache-store (fn xargs yargs com)
|
|
||||||
(push (list fn xargs yargs com) *ac-rpo-cache*)
|
|
||||||
com)
|
|
||||||
|
|
||||||
(defun eql-list (l1 l2)
|
|
||||||
(loop
|
|
||||||
(cond
|
|
||||||
((null l1)
|
|
||||||
(return (null l2)))
|
|
||||||
((null l2)
|
|
||||||
(return nil))
|
|
||||||
((neql (pop l1) (pop l2))
|
|
||||||
(return nil)))))
|
|
||||||
|
|
||||||
;;; ac-rpo.lisp EOF
|
|
|
@ -1,36 +0,0 @@
|
||||||
;;; -*- Mode: Lisp; Syntax: Common-Lisp; Package: common-lisp-user -*-
|
|
||||||
;;; File: agenda-system.lisp
|
|
||||||
;;; The contents of this file are subject to the Mozilla Public License
|
|
||||||
;;; Version 1.1 (the "License"); you may not use this file except in
|
|
||||||
;;; compliance with the License. You may obtain a copy of the License at
|
|
||||||
;;; http://www.mozilla.org/MPL/
|
|
||||||
;;;
|
|
||||||
;;; Software distributed under the License is distributed on an "AS IS"
|
|
||||||
;;; basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the
|
|
||||||
;;; License for the specific language governing rights and limitations
|
|
||||||
;;; under the License.
|
|
||||||
;;;
|
|
||||||
;;; The Original Code is SNARK.
|
|
||||||
;;; The Initial Developer of the Original Code is SRI International.
|
|
||||||
;;; Portions created by the Initial Developer are Copyright (C) 1981-2009.
|
|
||||||
;;; All Rights Reserved.
|
|
||||||
;;;
|
|
||||||
;;; Contributor(s): Mark E. Stickel <stickel@ai.sri.com>.
|
|
||||||
|
|
||||||
(in-package :common-lisp-user)
|
|
||||||
|
|
||||||
(defpackage :snark-agenda
|
|
||||||
(:use :common-lisp :snark-lisp :snark-deque :snark-sparse-array)
|
|
||||||
(:export
|
|
||||||
#:make-agenda
|
|
||||||
#:agenda-name #:agenda-length
|
|
||||||
#:agenda-insert #:agenda-delete
|
|
||||||
#:agenda-first #:pop-agenda #:mapnconc-agenda #:agenda-delete-if
|
|
||||||
#:limit-agenda-length
|
|
||||||
#:print-agenda
|
|
||||||
#:*agenda*
|
|
||||||
))
|
|
||||||
|
|
||||||
(loads "agenda")
|
|
||||||
|
|
||||||
;;; agenda-system.lisp EOF
|
|
Binary file not shown.
|
@ -1,234 +0,0 @@
|
||||||
;;; -*- Mode: Lisp; Syntax: Common-Lisp; Package: snark-agenda -*-
|
|
||||||
;;; File: agenda.lisp
|
|
||||||
;;; The contents of this file are subject to the Mozilla Public License
|
|
||||||
;;; Version 1.1 (the "License"); you may not use this file except in
|
|
||||||
;;; compliance with the License. You may obtain a copy of the License at
|
|
||||||
;;; http://www.mozilla.org/MPL/
|
|
||||||
;;;
|
|
||||||
;;; Software distributed under the License is distributed on an "AS IS"
|
|
||||||
;;; basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the
|
|
||||||
;;; License for the specific language governing rights and limitations
|
|
||||||
;;; under the License.
|
|
||||||
;;;
|
|
||||||
;;; The Original Code is SNARK.
|
|
||||||
;;; The Initial Developer of the Original Code is SRI International.
|
|
||||||
;;; Portions created by the Initial Developer are Copyright (C) 1981-2008.
|
|
||||||
;;; All Rights Reserved.
|
|
||||||
;;;
|
|
||||||
;;; Contributor(s): Mark E. Stickel <stickel@ai.sri.com>.
|
|
||||||
|
|
||||||
(in-package :snark-agenda)
|
|
||||||
|
|
||||||
(defstruct (agenda
|
|
||||||
(:print-function print-agenda3)
|
|
||||||
(:copier nil))
|
|
||||||
(name "" :read-only t)
|
|
||||||
(length 0)
|
|
||||||
(length-limit nil)
|
|
||||||
(length-limit-deletion-action #'identity :read-only t)
|
|
||||||
(same-item-p #'eql :read-only t)
|
|
||||||
(buckets (make-sparse-vector)))
|
|
||||||
|
|
||||||
;;; an agenda index value (priority) is (list integer_1 ... integer_n) or (list* integer_1 ... integer_n)
|
|
||||||
;;; which are both treated as the same sequence integer_1 ... integer_n
|
|
||||||
;;; this includes (list* integer) = integer as an agenda index value
|
|
||||||
;;; agenda index values are compared lexicographically in left-to-right order
|
|
||||||
;;; if one is prefix of another, they must be equal, e.g., can't have (2 18) and (2 18 1)
|
|
||||||
;;; agenda buckets are deques stored in nested sparse-vectors indexed by agenda index values
|
|
||||||
|
|
||||||
(defun find-agenda-bucket (buckets value &optional create)
|
|
||||||
(labels
|
|
||||||
((find-agenda-bucket* (buckets value)
|
|
||||||
(cond
|
|
||||||
((atom value)
|
|
||||||
(or (sparef buckets value)
|
|
||||||
(if create (setf (sparef buckets value) (make-deque)) nil)))
|
|
||||||
((null (rest value))
|
|
||||||
(or (sparef buckets (first value))
|
|
||||||
(if create (setf (sparef buckets (first value)) (make-deque)) nil)))
|
|
||||||
(t
|
|
||||||
(let ((v (sparef buckets (first value))))
|
|
||||||
(cond
|
|
||||||
(v
|
|
||||||
(find-agenda-bucket* v (rest value)))
|
|
||||||
(create
|
|
||||||
(find-agenda-bucket* (setf (sparef buckets (first value)) (make-sparse-vector)) (rest value)))
|
|
||||||
(t
|
|
||||||
nil)))))))
|
|
||||||
(find-agenda-bucket* buckets value)))
|
|
||||||
|
|
||||||
(defun first-or-last-nonempty-agenda-bucket (buckets last)
|
|
||||||
(labels
|
|
||||||
((first-or-last-nonempty-agenda-bucket* (buckets)
|
|
||||||
(prog->
|
|
||||||
(map-sparse-vector-with-indexes buckets :reverse last ->* x i)
|
|
||||||
(cond
|
|
||||||
((sparse-vector-p x)
|
|
||||||
(first-or-last-nonempty-agenda-bucket* x))
|
|
||||||
((deque-empty? x)
|
|
||||||
(setf (sparef buckets i) nil))
|
|
||||||
(t
|
|
||||||
(return-from first-or-last-nonempty-agenda-bucket x))))))
|
|
||||||
(first-or-last-nonempty-agenda-bucket* buckets)
|
|
||||||
nil))
|
|
||||||
|
|
||||||
(definline first-nonempty-agenda-bucket (buckets)
|
|
||||||
(first-or-last-nonempty-agenda-bucket buckets nil))
|
|
||||||
|
|
||||||
(definline last-nonempty-agenda-bucket (buckets)
|
|
||||||
(first-or-last-nonempty-agenda-bucket buckets t))
|
|
||||||
|
|
||||||
(defun collect-agenda-buckets (buckets)
|
|
||||||
(let ((result nil) result-last)
|
|
||||||
(labels
|
|
||||||
((collect-agenda-buckets* (buckets revalue)
|
|
||||||
(prog->
|
|
||||||
(map-sparse-vector-with-indexes buckets ->* x i)
|
|
||||||
(cond
|
|
||||||
((sparse-vector-p x)
|
|
||||||
(collect-agenda-buckets* x (cons i revalue)))
|
|
||||||
((deque-empty? x)
|
|
||||||
)
|
|
||||||
(t
|
|
||||||
(collect (list x (if (null revalue) i (reverse (cons i revalue)))) result))))))
|
|
||||||
(collect-agenda-buckets* buckets nil)
|
|
||||||
result)))
|
|
||||||
|
|
||||||
(defun agenda-insert (item value agenda &optional at-front)
|
|
||||||
(let* ((buckets (agenda-buckets agenda))
|
|
||||||
(q (find-agenda-bucket buckets value :create)))
|
|
||||||
(unless (and (not (deque-empty? q)) (funcall (agenda-same-item-p agenda) item (if at-front (deque-first q) (deque-last q))))
|
|
||||||
(if at-front (deque-push-first q item) (deque-push-last q item))
|
|
||||||
(let ((limit (agenda-length-limit agenda))
|
|
||||||
(length (agenda-length agenda)))
|
|
||||||
(cond
|
|
||||||
((and limit (<= limit length))
|
|
||||||
(let ((deleted-item (deque-pop-last (last-nonempty-agenda-bucket buckets))))
|
|
||||||
(cond
|
|
||||||
((eql item deleted-item)
|
|
||||||
nil)
|
|
||||||
(t
|
|
||||||
(funcall (agenda-length-limit-deletion-action agenda) deleted-item)
|
|
||||||
t))))
|
|
||||||
(t
|
|
||||||
(setf (agenda-length agenda) (+ length 1))
|
|
||||||
t))))))
|
|
||||||
|
|
||||||
(defun agenda-delete (item value agenda)
|
|
||||||
(let ((length (agenda-length agenda)))
|
|
||||||
(unless (eql 0 length)
|
|
||||||
(let ((q (find-agenda-bucket (agenda-buckets agenda) value)))
|
|
||||||
(when (and q (deque-delete q item))
|
|
||||||
(setf (agenda-length agenda) (- length 1))
|
|
||||||
t)))))
|
|
||||||
|
|
||||||
(defun agenda-first (agenda &optional delete)
|
|
||||||
(cond
|
|
||||||
((listp agenda)
|
|
||||||
(dolist (agenda agenda)
|
|
||||||
(unless (eql 0 (agenda-length agenda))
|
|
||||||
(return (agenda-first agenda delete)))))
|
|
||||||
(t
|
|
||||||
(let ((length (agenda-length agenda)))
|
|
||||||
(unless (eql 0 length)
|
|
||||||
(let ((q (first-nonempty-agenda-bucket (agenda-buckets agenda))))
|
|
||||||
(cond
|
|
||||||
(delete
|
|
||||||
(setf (agenda-length agenda) (- length 1))
|
|
||||||
(deque-pop-first q))
|
|
||||||
(t
|
|
||||||
(deque-first q)))))))))
|
|
||||||
|
|
||||||
(defun pop-agenda (agenda)
|
|
||||||
(agenda-first agenda t))
|
|
||||||
|
|
||||||
(defun map-agenda-buckets (function buckets)
|
|
||||||
(prog->
|
|
||||||
(map-sparse-vector buckets ->* x)
|
|
||||||
(cond
|
|
||||||
((sparse-vector-p x)
|
|
||||||
(map-agenda-buckets function x))
|
|
||||||
(t
|
|
||||||
(funcall function x)))))
|
|
||||||
|
|
||||||
(defun mapnconc-agenda (function agenda)
|
|
||||||
(let ((result nil) result-last)
|
|
||||||
(prog->
|
|
||||||
(map-agenda-buckets (agenda-buckets agenda) ->* q)
|
|
||||||
(mapnconc-deque q ->* item)
|
|
||||||
(cond
|
|
||||||
((or (null function) (eq 'list function) (eq #'list function))
|
|
||||||
(collect item result))
|
|
||||||
(t
|
|
||||||
(ncollect (funcall function item) result))))))
|
|
||||||
|
|
||||||
(defun agenda-delete-if (function agenda &optional apply-length-limit-deletion-action)
|
|
||||||
(prog->
|
|
||||||
(and apply-length-limit-deletion-action (agenda-length-limit-deletion-action agenda) -> deletion-action)
|
|
||||||
(map-agenda-buckets (agenda-buckets agenda) ->* q)
|
|
||||||
(deque-delete-if q ->* v)
|
|
||||||
(when (funcall function v)
|
|
||||||
(decf (agenda-length agenda))
|
|
||||||
(when deletion-action
|
|
||||||
(funcall deletion-action v))
|
|
||||||
t)))
|
|
||||||
|
|
||||||
(defun limit-agenda-length (agenda limit)
|
|
||||||
(let ((length (agenda-length agenda)))
|
|
||||||
(setf (agenda-length-limit agenda) limit)
|
|
||||||
(when (and limit (< limit length))
|
|
||||||
(let ((i 0))
|
|
||||||
(agenda-delete-if (lambda (item) (declare (ignore item)) (> (incf i) limit)) agenda t)))))
|
|
||||||
|
|
||||||
(defvar *agenda*) ;default agenda(s) for print-agenda to display
|
|
||||||
|
|
||||||
(defun print-agenda (&key (agenda *agenda*) entries)
|
|
||||||
(cond
|
|
||||||
((listp agenda)
|
|
||||||
(let ((all-empty t))
|
|
||||||
(dolist (agenda agenda)
|
|
||||||
(unless (eql 0 (agenda-length agenda))
|
|
||||||
(setf all-empty nil)
|
|
||||||
(print-agenda :agenda agenda :entries entries)))
|
|
||||||
(when all-empty
|
|
||||||
(format t "~%; All agendas are empty."))))
|
|
||||||
(t
|
|
||||||
(with-standard-io-syntax2
|
|
||||||
(format t "~%; The agenda of ~A has ~D entr~:@P~A"
|
|
||||||
(agenda-name agenda)
|
|
||||||
(agenda-length agenda)
|
|
||||||
(if (eql 0 (agenda-length agenda)) "." ":"))
|
|
||||||
(unless (eql 0 (agenda-length agenda))
|
|
||||||
(let ((buckets (collect-agenda-buckets (agenda-buckets agenda))))
|
|
||||||
(do* ((k (length buckets))
|
|
||||||
(k1 (ceiling k 3))
|
|
||||||
(k2 (ceiling (- k k1) 2))
|
|
||||||
(buckets3 (nthcdr (+ k1 k2) buckets))
|
|
||||||
(buckets2 (nbutlast (nthcdr k1 buckets) (- k k1 k2)))
|
|
||||||
(buckets1 (nbutlast buckets k2))
|
|
||||||
b)
|
|
||||||
((null buckets1))
|
|
||||||
(setf b (pop buckets1))
|
|
||||||
(format t "~%; ~5D with value ~A" (deque-length (first b)) (second b))
|
|
||||||
(unless (null buckets2)
|
|
||||||
(setf b (pop buckets2))
|
|
||||||
(format t "~31T~5D with value ~A" (deque-length (first b)) (second b))
|
|
||||||
(unless (null buckets3)
|
|
||||||
(setf b (pop buckets3))
|
|
||||||
(format t "~61T~5D with value ~A" (deque-length (first b)) (second b))))))
|
|
||||||
(when (and entries (not (eql 0 (agenda-length agenda))))
|
|
||||||
(prog->
|
|
||||||
(dolist (collect-agenda-buckets (agenda-buckets agenda)) ->* x)
|
|
||||||
(first x -> q)
|
|
||||||
(second x -> value)
|
|
||||||
(unless (deque-empty? q)
|
|
||||||
(format t "~%;~%; Entries with value ~A:" value)
|
|
||||||
(mapnconc-deque (lambda (x) (format t "~%; ~A" x)) q))))))
|
|
||||||
nil)))
|
|
||||||
|
|
||||||
(defun print-agenda3 (agenda stream depth)
|
|
||||||
(declare (ignore depth))
|
|
||||||
(print-unreadable-object (agenda stream :type t :identity nil)
|
|
||||||
(format stream "~S" (agenda-name agenda))))
|
|
||||||
|
|
||||||
;;; agenda.lisp EOF
|
|
Binary file not shown.
|
@ -1,121 +0,0 @@
|
||||||
;;; -*- Mode: Lisp; Syntax: Common-Lisp; Package: snark -*-
|
|
||||||
;;; File: alists.lisp
|
|
||||||
;;; The contents of this file are subject to the Mozilla Public License
|
|
||||||
;;; Version 1.1 (the "License"); you may not use this file except in
|
|
||||||
;;; compliance with the License. You may obtain a copy of the License at
|
|
||||||
;;; http://www.mozilla.org/MPL/
|
|
||||||
;;;
|
|
||||||
;;; Software distributed under the License is distributed on an "AS IS"
|
|
||||||
;;; basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the
|
|
||||||
;;; License for the specific language governing rights and limitations
|
|
||||||
;;; under the License.
|
|
||||||
;;;
|
|
||||||
;;; The Original Code is SNARK.
|
|
||||||
;;; The Initial Developer of the Original Code is SRI International.
|
|
||||||
;;; Portions created by the Initial Developer are Copyright (C) 1981-2011.
|
|
||||||
;;; All Rights Reserved.
|
|
||||||
;;;
|
|
||||||
;;; Contributor(s): Mark E. Stickel <stickel@ai.sri.com>.
|
|
||||||
|
|
||||||
(in-package :snark)
|
|
||||||
|
|
||||||
;; alists are assumed to be well formed:
|
|
||||||
;; lists of dotted pairs ending with nil
|
|
||||||
;; car of each dotted pair is a distinct constant
|
|
||||||
|
|
||||||
(defun equal-alist-p (alist1 alist2 subst)
|
|
||||||
(and
|
|
||||||
(do ((p1 alist1 (rest p1))
|
|
||||||
(p2 alist2 (rest p2)))
|
|
||||||
(nil)
|
|
||||||
(dereference
|
|
||||||
p1 subst
|
|
||||||
:if-variable (return (dereference p2 subst :if-variable (eq p1 p2))) ;allow variable at end
|
|
||||||
:if-constant (return (dereference p2 subst :if-constant t)) ;assume p1=p2=nil
|
|
||||||
:if-compound-cons (unless (dereference p2 subst :if-compound-cons t)
|
|
||||||
(return nil))))
|
|
||||||
(do ((p1 alist1 (rest p1)))
|
|
||||||
(nil)
|
|
||||||
(dereference
|
|
||||||
p1 subst
|
|
||||||
:if-variable (return t)
|
|
||||||
:if-constant (return t)
|
|
||||||
:if-compound-cons (unless (do ((p2 alist2 (rest p2)))
|
|
||||||
(nil)
|
|
||||||
(dereference
|
|
||||||
p2 subst
|
|
||||||
:if-variable (return nil)
|
|
||||||
:if-constant (return nil)
|
|
||||||
:if-compound-cons (when (eql (car (first p1)) (car (first p2)))
|
|
||||||
(return (equal-p (cdr (first p1)) (cdr (first p2)) subst)))))
|
|
||||||
(return nil))))))
|
|
||||||
|
|
||||||
(defun conjoin-alists (alist1 alist2)
|
|
||||||
(let ((result nil) result-last)
|
|
||||||
(dolist (x alist1)
|
|
||||||
(let ((x1 (car x)))
|
|
||||||
(dolist (y alist2 (collect x result))
|
|
||||||
(when (eql x1 (car y))
|
|
||||||
(collect (cons x1 (conjoin (cdr x) (cdr y))) result)
|
|
||||||
(return)))))
|
|
||||||
(dolist (y alist2)
|
|
||||||
(let ((y1 (car y)))
|
|
||||||
(dolist (x alist1 (collect y result))
|
|
||||||
(when (eql y1 (car x))
|
|
||||||
(return)))))
|
|
||||||
result))
|
|
||||||
|
|
||||||
(defun conjoin-alist1 (key value alist)
|
|
||||||
(labels
|
|
||||||
((conjoin-alist1 (alist)
|
|
||||||
(cond
|
|
||||||
((null alist)
|
|
||||||
(values nil nil))
|
|
||||||
(t
|
|
||||||
(let ((p (first alist)))
|
|
||||||
(cond
|
|
||||||
((eql key (car p))
|
|
||||||
(let ((p* (lcons (car p) (conjoin value (cdr p)) p)))
|
|
||||||
(values (if (eq p p*) alist (cons p* (rest alist))) t)))
|
|
||||||
(t
|
|
||||||
(let ((v (rest alist)))
|
|
||||||
(multiple-value-bind (v* found) (conjoin-alist1 v)
|
|
||||||
(values (if (eq v v*) alist (cons p v*)) found))))))))))
|
|
||||||
(multiple-value-bind (alist* found) (conjoin-alist1 alist)
|
|
||||||
(if found alist* (cons (cons key value) alist*)))))
|
|
||||||
|
|
||||||
(defun disjoin-alists (alist1 alist2)
|
|
||||||
(let ((result nil) result-last)
|
|
||||||
(dolist (x alist1)
|
|
||||||
(let ((x1 (car x)))
|
|
||||||
(dolist (y alist2 (collect x result))
|
|
||||||
(when (eql x1 (car y))
|
|
||||||
(collect (cons x1 (disjoin (cdr x) (cdr y))) result)
|
|
||||||
(return)))))
|
|
||||||
(dolist (y alist2)
|
|
||||||
(let ((y1 (car y)))
|
|
||||||
(dolist (x alist1 (collect y result))
|
|
||||||
(when (eql y1 (car x))
|
|
||||||
(return)))))
|
|
||||||
result))
|
|
||||||
|
|
||||||
(defun disjoin-alist1 (key value alist)
|
|
||||||
(labels
|
|
||||||
((disjoin-alist1 (alist)
|
|
||||||
(cond
|
|
||||||
((null alist)
|
|
||||||
(values nil nil))
|
|
||||||
(t
|
|
||||||
(let ((p (first alist)))
|
|
||||||
(cond
|
|
||||||
((eql key (car p))
|
|
||||||
(let ((p* (lcons (car p) (disjoin value (cdr p)) p)))
|
|
||||||
(values (if (eq p p*) alist (cons p* (rest alist))) t)))
|
|
||||||
(t
|
|
||||||
(let ((v (rest alist)))
|
|
||||||
(multiple-value-bind (v* found) (disjoin-alist1 v)
|
|
||||||
(values (if (eq v v*) alist (cons p v*)) found))))))))))
|
|
||||||
(multiple-value-bind (alist* found) (disjoin-alist1 alist)
|
|
||||||
(if found alist* (cons (cons key value) alist*)))))
|
|
||||||
|
|
||||||
;;; alists.lisp EOF
|
|
Binary file not shown.
|
@ -1,82 +0,0 @@
|
||||||
;;; -*- Mode: Lisp; Syntax: Common-Lisp; Package: snark -*-
|
|
||||||
;;; File: argument-bag-ac.lisp
|
|
||||||
;;; The contents of this file are subject to the Mozilla Public License
|
|
||||||
;;; Version 1.1 (the "License"); you may not use this file except in
|
|
||||||
;;; compliance with the License. You may obtain a copy of the License at
|
|
||||||
;;; http://www.mozilla.org/MPL/
|
|
||||||
;;;
|
|
||||||
;;; Software distributed under the License is distributed on an "AS IS"
|
|
||||||
;;; basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the
|
|
||||||
;;; License for the specific language governing rights and limitations
|
|
||||||
;;; under the License.
|
|
||||||
;;;
|
|
||||||
;;; The Original Code is SNARK.
|
|
||||||
;;; The Initial Developer of the Original Code is SRI International.
|
|
||||||
;;; Portions created by the Initial Developer are Copyright (C) 1981-2010.
|
|
||||||
;;; All Rights Reserved.
|
|
||||||
;;;
|
|
||||||
;;; Contributor(s): Mark E. Stickel <stickel@ai.sri.com>.
|
|
||||||
|
|
||||||
(in-package :snark)
|
|
||||||
|
|
||||||
(defmacro inc-argument-count (compare-fun term counts inc not-found-form &optional cancel)
|
|
||||||
(let ((count (gensym)) (v (gensym)))
|
|
||||||
`(dolist (,v ,counts ,not-found-form)
|
|
||||||
(let ((,count (tc-count ,v)))
|
|
||||||
(unless (eql 0 ,count)
|
|
||||||
(when ,(cond
|
|
||||||
((member compare-fun '(equal-p))
|
|
||||||
`(,compare-fun ,term (tc-term ,v) subst))
|
|
||||||
(t
|
|
||||||
`(,compare-fun ,term (tc-term ,v))))
|
|
||||||
(setf (tc-count ,v) (+ ,count ,inc))
|
|
||||||
,@(when cancel
|
|
||||||
`((unless ,cancel
|
|
||||||
(when (if (plusp ,count) (minusp ,inc) (plusp ,inc))
|
|
||||||
(setf ,cancel t)))))
|
|
||||||
(return)))))))
|
|
||||||
|
|
||||||
(defmacro count-argument (fn arg counts inc count-arguments-fun not-found-form &optional cancel)
|
|
||||||
`(dereference
|
|
||||||
,arg subst
|
|
||||||
:if-variable (inc-argument-count eq ,arg ,counts ,inc ,not-found-form ,cancel)
|
|
||||||
:if-constant (inc-argument-count eql ,arg ,counts ,inc ,not-found-form ,cancel)
|
|
||||||
:if-compound (cond
|
|
||||||
((and ,fn (eq ,fn (head ,arg)))
|
|
||||||
,(if cancel
|
|
||||||
`(if ,cancel
|
|
||||||
(setf ,counts (,count-arguments-fun ,fn (args ,arg) subst ,counts ,inc))
|
|
||||||
(setf (values ,counts ,cancel) (,count-arguments-fun ,fn (args ,arg) subst ,counts ,inc)))
|
|
||||||
`(setf ,counts (,count-arguments-fun ,fn (args ,arg) subst ,counts ,inc))))
|
|
||||||
(t
|
|
||||||
(inc-argument-count equal-p ,arg ,counts ,inc ,not-found-form ,cancel)))))
|
|
||||||
|
|
||||||
(defun count-arguments (fn args subst &optional counts (inc 1))
|
|
||||||
;; creates list of term and count pairs for argument list
|
|
||||||
;; term and count pair is represented as (term . count)
|
|
||||||
;; return 2nd value T if a cancellation occurs
|
|
||||||
(let ((cancel nil))
|
|
||||||
(dolist (arg args)
|
|
||||||
(count-argument fn arg counts inc count-arguments (push (make-tc arg inc) counts) cancel))
|
|
||||||
(if cancel
|
|
||||||
(values counts t)
|
|
||||||
counts)))
|
|
||||||
|
|
||||||
(defun recount-arguments (fn terms-and-counts subst)
|
|
||||||
(let (new-terms-and-counts)
|
|
||||||
(dolist (tc terms-and-counts)
|
|
||||||
(let ((term (tc-term tc)) (count (tc-count tc)))
|
|
||||||
(count-argument fn term new-terms-and-counts count count-arguments (push (make-tc term count) new-terms-and-counts))))
|
|
||||||
new-terms-and-counts))
|
|
||||||
|
|
||||||
(defun term-size-difference (terms-and-counts subst &optional var0)
|
|
||||||
(let ((n 0))
|
|
||||||
(dolist (tc terms-and-counts)
|
|
||||||
(let ((count (tc-count tc)))
|
|
||||||
(unless (eql 0 count)
|
|
||||||
(let ((term (tc-term tc)))
|
|
||||||
(unless (and var0 (dereference term subst :if-variable (not (variable-frozen-p term))))
|
|
||||||
(incf n (* count (size term subst))))))))
|
|
||||||
n))
|
|
||||||
|
|
||||||
;;; argument-bag-ac.lisp EOF
|
|
Binary file not shown.
|
@ -1,145 +0,0 @@
|
||||||
;;; -*- Mode: Lisp; Syntax: Common-Lisp; Package: snark -*-
|
|
||||||
;;; File: argument-list-a1.lisp
|
|
||||||
;;; The contents of this file are subject to the Mozilla Public License
|
|
||||||
;;; Version 1.1 (the "License"); you may not use this file except in
|
|
||||||
;;; compliance with the License. You may obtain a copy of the License at
|
|
||||||
;;; http://www.mozilla.org/MPL/
|
|
||||||
;;;
|
|
||||||
;;; Software distributed under the License is distributed on an "AS IS"
|
|
||||||
;;; basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the
|
|
||||||
;;; License for the specific language governing rights and limitations
|
|
||||||
;;; under the License.
|
|
||||||
;;;
|
|
||||||
;;; The Original Code is SNARK.
|
|
||||||
;;; The Initial Developer of the Original Code is SRI International.
|
|
||||||
;;; Portions created by the Initial Developer are Copyright (C) 1981-2010.
|
|
||||||
;;; All Rights Reserved.
|
|
||||||
;;;
|
|
||||||
;;; Contributor(s): Mark E. Stickel <stickel@ai.sri.com>.
|
|
||||||
|
|
||||||
(in-package :snark)
|
|
||||||
|
|
||||||
(defun argument-list-a1 (fn args &optional subst (identity none))
|
|
||||||
;; return list of arguments of associative function fn
|
|
||||||
;; return undereferenced args if no flattening or identity elimination
|
|
||||||
(if (null args)
|
|
||||||
nil
|
|
||||||
(labels
|
|
||||||
((argument-list-a1* (args)
|
|
||||||
(let* ((l (rest args))
|
|
||||||
(l* (if (null l) nil (argument-list-a1* l)))
|
|
||||||
(arg (first args))
|
|
||||||
(arg* arg))
|
|
||||||
(cond
|
|
||||||
((dereference arg* subst :if-compound-appl (eq fn (heada arg*)))
|
|
||||||
(let* ((v (argsa arg*))
|
|
||||||
(v* (if (null v) nil (argument-list-a1* v))))
|
|
||||||
(cond
|
|
||||||
((null l*)
|
|
||||||
v*)
|
|
||||||
((null v*)
|
|
||||||
l*)
|
|
||||||
(t
|
|
||||||
(append v* l*)))))
|
|
||||||
((eql identity arg*)
|
|
||||||
l*)
|
|
||||||
((eq l l*)
|
|
||||||
args)
|
|
||||||
(t
|
|
||||||
(cons arg l*))))))
|
|
||||||
(argument-list-a1* args))))
|
|
||||||
|
|
||||||
(defun argument-count-a1 (fn args &optional subst (identity none) dont-count-variables)
|
|
||||||
(let ((c 0))
|
|
||||||
(dolist (arg args)
|
|
||||||
(dereference
|
|
||||||
arg subst
|
|
||||||
:if-compound-appl (if (eq fn (heada arg))
|
|
||||||
(incf c (argument-count-a1 fn (argsa arg) subst identity dont-count-variables))
|
|
||||||
(incf c))
|
|
||||||
:if-compound-cons (incf c)
|
|
||||||
:if-constant (unless (eql identity arg)
|
|
||||||
(incf c))
|
|
||||||
:if-variable (unless (and dont-count-variables
|
|
||||||
(neq none identity)
|
|
||||||
(not (variable-frozen-p arg)))
|
|
||||||
(incf c))))
|
|
||||||
c))
|
|
||||||
|
|
||||||
(defun similar-argument-list-ac1-p (fn args1 args2 &optional subst (identity none))
|
|
||||||
;; same number of variable, list, constant, and application arguments
|
|
||||||
;; also same number of first constant and first function seen
|
|
||||||
(let ((nvari 0) (nconst 0) (nappl 0)
|
|
||||||
(const1 none) (head1 none) nconst1 nhead1)
|
|
||||||
(labels
|
|
||||||
((similar-argument-list-ac1-p1 (arg)
|
|
||||||
(dereference
|
|
||||||
arg subst
|
|
||||||
:if-variable (incf nvari)
|
|
||||||
:if-constant (unless (eql identity arg)
|
|
||||||
(cond
|
|
||||||
((eq const1 none)
|
|
||||||
(setf const1 arg)
|
|
||||||
(setf nconst1 1))
|
|
||||||
((eql arg const1)
|
|
||||||
(incf nconst1))
|
|
||||||
(t
|
|
||||||
(incf nconst))))
|
|
||||||
:if-compound (let ((head (head arg)))
|
|
||||||
(if (eq fn head)
|
|
||||||
(dolist (x (args arg))
|
|
||||||
(similar-argument-list-ac1-p1 x))
|
|
||||||
(cond
|
|
||||||
((eq head1 none)
|
|
||||||
(setf head1 head)
|
|
||||||
(setf nhead1 1))
|
|
||||||
((eq head head1)
|
|
||||||
(incf nhead1))
|
|
||||||
(t
|
|
||||||
(incf nappl)))))))
|
|
||||||
(similar-argument-list-ac1-p2 (arg)
|
|
||||||
(dereference
|
|
||||||
arg subst
|
|
||||||
:if-variable (if (eql 0 nvari)
|
|
||||||
(return-from similar-argument-list-ac1-p nil)
|
|
||||||
(decf nvari))
|
|
||||||
:if-constant (unless (eql identity arg)
|
|
||||||
(cond
|
|
||||||
((eq none const1)
|
|
||||||
(return-from similar-argument-list-ac1-p nil))
|
|
||||||
((eql arg const1)
|
|
||||||
(if (eql 0 nconst1)
|
|
||||||
(return-from similar-argument-list-ac1-p nil)
|
|
||||||
(decf nconst1)))
|
|
||||||
(t
|
|
||||||
(if (eql 0 nconst)
|
|
||||||
(return-from similar-argument-list-ac1-p nil)
|
|
||||||
(decf nconst)))))
|
|
||||||
:if-compound (let ((head (head arg)))
|
|
||||||
(if (eq fn head)
|
|
||||||
(dolist (x (args arg))
|
|
||||||
(similar-argument-list-ac1-p2 x))
|
|
||||||
(cond
|
|
||||||
((eq none head1)
|
|
||||||
(return-from similar-argument-list-ac1-p nil))
|
|
||||||
((eq head head1)
|
|
||||||
(if (eql 0 nhead1)
|
|
||||||
(return-from similar-argument-list-ac1-p nil)
|
|
||||||
(decf nhead1)))
|
|
||||||
(t
|
|
||||||
(if (eql 0 nappl)
|
|
||||||
(return-from similar-argument-list-ac1-p nil)
|
|
||||||
(decf nappl)))))))))
|
|
||||||
(dolist (x args1)
|
|
||||||
(similar-argument-list-ac1-p1 x))
|
|
||||||
(dolist (x args2)
|
|
||||||
(similar-argument-list-ac1-p2 x))
|
|
||||||
(and (eql 0 nvari) (eql 0 nconst) (eql 0 nappl)))))
|
|
||||||
|
|
||||||
(defun flatargs (term &optional subst)
|
|
||||||
(let ((fn (head term)))
|
|
||||||
(if (function-associative fn)
|
|
||||||
(argument-list-a1 fn (argsa term) subst)
|
|
||||||
(args term))))
|
|
||||||
|
|
||||||
;;; argument-list-a1.lisp EOF
|
|
Binary file not shown.
|
@ -1,502 +0,0 @@
|
||||||
;;; -*- Mode: Lisp; Syntax: Common-Lisp; Package: snark -*-
|
|
||||||
;;; File: assertion-analysis.lisp
|
|
||||||
;;; The contents of this file are subject to the Mozilla Public License
|
|
||||||
;;; Version 1.1 (the "License"); you may not use this file except in
|
|
||||||
;;; compliance with the License. You may obtain a copy of the License at
|
|
||||||
;;; http://www.mozilla.org/MPL/
|
|
||||||
;;;
|
|
||||||
;;; Software distributed under the License is distributed on an "AS IS"
|
|
||||||
;;; basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the
|
|
||||||
;;; License for the specific language governing rights and limitations
|
|
||||||
;;; under the License.
|
|
||||||
;;;
|
|
||||||
;;; The Original Code is SNARK.
|
|
||||||
;;; The Initial Developer of the Original Code is SRI International.
|
|
||||||
;;; Portions created by the Initial Developer are Copyright (C) 1981-2011.
|
|
||||||
;;; All Rights Reserved.
|
|
||||||
;;;
|
|
||||||
;;; Contributor(s): Mark E. Stickel <stickel@ai.sri.com>.
|
|
||||||
|
|
||||||
;;; the main purpose of this code is to recognize axioms
|
|
||||||
;;; for commutativity, associativity, etc. so that the
|
|
||||||
;;; appropriate function or relation symbol declarations can be
|
|
||||||
;;; made when running TPTP problems, where stupid and inconvenient
|
|
||||||
;;; rules do not allow any problem-specific input other than the axioms
|
|
||||||
;;;
|
|
||||||
;;; in general, using assertion-analysis to automatically declare
|
|
||||||
;;; special properties of relations and functions is NOT encouraged
|
|
||||||
|
|
||||||
(in-package :snark)
|
|
||||||
|
|
||||||
(defvar *wff*)
|
|
||||||
|
|
||||||
(declaim (special *extended-variant*))
|
|
||||||
|
|
||||||
(defvar *assertion-analysis-patterns*)
|
|
||||||
(defvar *assertion-analysis-function-info*)
|
|
||||||
(defvar *assertion-analysis-relation-info*)
|
|
||||||
|
|
||||||
(defstruct aa-function
|
|
||||||
function
|
|
||||||
(left-identities nil)
|
|
||||||
(right-identities nil)
|
|
||||||
(left-inverses nil)
|
|
||||||
(right-inverses nil)
|
|
||||||
(commutative nil)
|
|
||||||
(associative nil)
|
|
||||||
(closure-relations nil))
|
|
||||||
|
|
||||||
(defstruct aa-relation
|
|
||||||
relation
|
|
||||||
(left-identities nil)
|
|
||||||
(right-identities nil)
|
|
||||||
(left-inverses nil)
|
|
||||||
(right-inverses nil)
|
|
||||||
(commutative nil)
|
|
||||||
(assoc1-p nil)
|
|
||||||
(assoc2-p nil)
|
|
||||||
(functional-p nil)
|
|
||||||
(closure-functions nil))
|
|
||||||
|
|
||||||
(defun aa-function (f)
|
|
||||||
(let ((f# (funcall *standard-eql-numbering* :lookup f)))
|
|
||||||
(or (sparef *assertion-analysis-function-info* f#)
|
|
||||||
(progn
|
|
||||||
(cl:assert (function-symbol-p f))
|
|
||||||
(setf (sparef *assertion-analysis-function-info* f#)
|
|
||||||
(make-aa-function :function f))))))
|
|
||||||
|
|
||||||
(defun aa-relation (p)
|
|
||||||
(let ((p# (funcall *standard-eql-numbering* :lookup p)))
|
|
||||||
(or (sparef *assertion-analysis-relation-info* p#)
|
|
||||||
(progn
|
|
||||||
(cl:assert (function-symbol-p p))
|
|
||||||
(setf (sparef *assertion-analysis-relation-info* p#)
|
|
||||||
(make-aa-relation :relation p))))))
|
|
||||||
|
|
||||||
(defun print-assertion-analysis-note (name)
|
|
||||||
(with-standard-io-syntax2
|
|
||||||
(format t "~%; Recognized ~A assertion ~S." name (renumber *wff*))))
|
|
||||||
|
|
||||||
(defun note-function-associative (f)
|
|
||||||
(when (print-assertion-analysis-notes?)
|
|
||||||
(print-assertion-analysis-note "associativity"))
|
|
||||||
(setf (aa-function-associative (aa-function f)) t))
|
|
||||||
|
|
||||||
(defun note-function-commutative (f)
|
|
||||||
(when (print-assertion-analysis-notes?)
|
|
||||||
(print-assertion-analysis-note "commutativity"))
|
|
||||||
(setf (aa-function-commutative (aa-function f)) t))
|
|
||||||
|
|
||||||
(defun note-function-left-identity (f e)
|
|
||||||
(when (print-assertion-analysis-notes?)
|
|
||||||
(print-assertion-analysis-note "left identity"))
|
|
||||||
(pushnew e (aa-function-left-identities (aa-function f))))
|
|
||||||
|
|
||||||
(defun note-function-right-identity (f e)
|
|
||||||
(when (print-assertion-analysis-notes?)
|
|
||||||
(print-assertion-analysis-note "right identity"))
|
|
||||||
(pushnew e (aa-function-right-identities (aa-function f))))
|
|
||||||
|
|
||||||
(defun note-function-left-inverse (f g e)
|
|
||||||
(when (print-assertion-analysis-notes?)
|
|
||||||
(print-assertion-analysis-note "possible left inverse"))
|
|
||||||
(pushnew (list g e) (aa-function-left-inverses (aa-function f)) :test #'equal))
|
|
||||||
|
|
||||||
(defun note-function-right-inverse (f g e)
|
|
||||||
(when (print-assertion-analysis-notes?)
|
|
||||||
(print-assertion-analysis-note "possible right inverse"))
|
|
||||||
(pushnew (list g e) (aa-function-right-inverses (aa-function f)) :test #'equal))
|
|
||||||
|
|
||||||
(defun note-relation-assoc1 (p)
|
|
||||||
(when (print-assertion-analysis-notes?)
|
|
||||||
(print-assertion-analysis-note "possible associativity"))
|
|
||||||
(setf (aa-relation-assoc1-p (aa-relation p)) t))
|
|
||||||
|
|
||||||
(defun note-relation-assoc2 (p)
|
|
||||||
(when (print-assertion-analysis-notes?)
|
|
||||||
(print-assertion-analysis-note "possible associativity"))
|
|
||||||
(setf (aa-relation-assoc2-p (aa-relation p)) t))
|
|
||||||
|
|
||||||
(defun note-relation-commutative (p)
|
|
||||||
(when (print-assertion-analysis-notes?)
|
|
||||||
(print-assertion-analysis-note "commutativity"))
|
|
||||||
(setf (aa-relation-commutative (aa-relation p)) t))
|
|
||||||
|
|
||||||
(defun note-relation-left-identity (p e)
|
|
||||||
(when (print-assertion-analysis-notes?)
|
|
||||||
(print-assertion-analysis-note "possible left identity"))
|
|
||||||
(pushnew e (aa-relation-left-identities (aa-relation p))))
|
|
||||||
|
|
||||||
(defun note-relation-right-identity (p e)
|
|
||||||
(when (print-assertion-analysis-notes?)
|
|
||||||
(print-assertion-analysis-note "possible right identity"))
|
|
||||||
(pushnew e (aa-relation-right-identities (aa-relation p))))
|
|
||||||
|
|
||||||
(defun note-relation-left-inverse (p g e)
|
|
||||||
(when (print-assertion-analysis-notes?)
|
|
||||||
(print-assertion-analysis-note "possible left inverse"))
|
|
||||||
(pushnew (list g e) (aa-relation-left-inverses (aa-relation p)) :test #'equal))
|
|
||||||
|
|
||||||
(defun note-relation-right-inverse (p g e)
|
|
||||||
(when (print-assertion-analysis-notes?)
|
|
||||||
(print-assertion-analysis-note "possible right inverse"))
|
|
||||||
(pushnew (list g e) (aa-relation-right-inverses (aa-relation p)) :test #'equal))
|
|
||||||
|
|
||||||
(defun note-relation-functional (p)
|
|
||||||
(when (print-assertion-analysis-notes?)
|
|
||||||
(print-assertion-analysis-note "relation functionality"))
|
|
||||||
(setf (aa-relation-functional-p (aa-relation p)) t))
|
|
||||||
|
|
||||||
(defun note-relation-closure (p f)
|
|
||||||
(when (print-assertion-analysis-notes?)
|
|
||||||
(print-assertion-analysis-note "relation function"))
|
|
||||||
(pushnew f (aa-relation-closure-functions (aa-relation p)))
|
|
||||||
(pushnew p (aa-function-closure-relations (aa-function f))))
|
|
||||||
|
|
||||||
(defun function-associativity-tests ()
|
|
||||||
(let ((f (make-function-symbol (gensym) 2))
|
|
||||||
(x (make-variable))
|
|
||||||
(y (make-variable))
|
|
||||||
(z (make-variable)))
|
|
||||||
(list
|
|
||||||
;; (= (f (f x y) z) (f x (f y z)))
|
|
||||||
(list (make-equality0 (make-compound f (make-compound f x y) z) (make-compound f x (make-compound f y z)))
|
|
||||||
(list 'note-function-associative f)))))
|
|
||||||
|
|
||||||
(defun function-commutativity-tests ()
|
|
||||||
(let ((f (make-function-symbol (gensym) 2))
|
|
||||||
(x (make-variable))
|
|
||||||
(y (make-variable)))
|
|
||||||
(list
|
|
||||||
;; (= (f x y) (f y x))
|
|
||||||
(list (make-equality0 (make-compound f x y) (make-compound f y x))
|
|
||||||
(list 'note-function-commutative f)))))
|
|
||||||
|
|
||||||
(defun function-identity-tests ()
|
|
||||||
(let ((f (make-function-symbol (gensym) 2))
|
|
||||||
(e (gensym))
|
|
||||||
(x (make-variable)))
|
|
||||||
(list
|
|
||||||
;; (= (f e x) x)
|
|
||||||
(list (make-equality0 (make-compound f e x) x)
|
|
||||||
(list 'note-function-left-identity f e))
|
|
||||||
;; (= (f x e) x)
|
|
||||||
(list (make-equality0 (make-compound f x e) x)
|
|
||||||
(list 'note-function-right-identity f e)))))
|
|
||||||
|
|
||||||
(defun function-inverse-tests ()
|
|
||||||
(let ((f (make-function-symbol (gensym) 2))
|
|
||||||
(g (make-function-symbol (gensym) 1))
|
|
||||||
(e (gensym))
|
|
||||||
(x (make-variable)))
|
|
||||||
(list
|
|
||||||
;; (= (f (g x) x) e)
|
|
||||||
(list (make-equality0 (make-compound f (make-compound g x) x) e)
|
|
||||||
(list 'note-function-left-inverse f g e))
|
|
||||||
;; (= (f x (g x)) e)
|
|
||||||
(list (make-equality0 (make-compound f x (make-compound g x)) e)
|
|
||||||
(list 'note-function-right-inverse f g e)))))
|
|
||||||
|
|
||||||
(defun relation-associativity-tests ()
|
|
||||||
(let ((p (make-function-symbol (gensym) 3))
|
|
||||||
(x (make-variable))
|
|
||||||
(y (make-variable))
|
|
||||||
(z (make-variable))
|
|
||||||
(u (make-variable))
|
|
||||||
(v (make-variable))
|
|
||||||
(w (make-variable)))
|
|
||||||
(let ((a (make-compound p x y u))
|
|
||||||
(b (make-compound p y z v))
|
|
||||||
(c (make-compound p u z w))
|
|
||||||
(d (make-compound p x v w)))
|
|
||||||
(list
|
|
||||||
;; (or (not (p x y u)) (not (p y z v)) (not (p u z w)) (p x v w))
|
|
||||||
(list (make-compound *or*
|
|
||||||
(make-compound *not* a)
|
|
||||||
(make-compound *not* b)
|
|
||||||
(make-compound *not* c)
|
|
||||||
d)
|
|
||||||
(list 'note-relation-assoc1 p))
|
|
||||||
;; (implies (and (p x y u) (p y z v) (p u z w)) (p x v w))
|
|
||||||
(list (make-compound *implies*
|
|
||||||
(make-compound *and* a b c)
|
|
||||||
d)
|
|
||||||
(list 'note-relation-assoc1 p))
|
|
||||||
;; (or (not (p x y u)) (not (p y z v)) (not (p x v w)) (p u z w))
|
|
||||||
(list (make-compound *or*
|
|
||||||
(make-compound *not* a)
|
|
||||||
(make-compound *not* b)
|
|
||||||
(make-compound *not* d)
|
|
||||||
c)
|
|
||||||
(list 'note-relation-assoc2 p))
|
|
||||||
;; (implies (and (p x y u) (p y z v) (p x v w)) (p u z w))
|
|
||||||
(list (make-compound *implies*
|
|
||||||
(make-compound *and* a b d)
|
|
||||||
c)
|
|
||||||
(list 'note-relation-assoc2 p))))))
|
|
||||||
|
|
||||||
(defun relation-commutativity-tests ()
|
|
||||||
(let ((p (make-function-symbol (gensym) 3))
|
|
||||||
(x (make-variable))
|
|
||||||
(y (make-variable))
|
|
||||||
(z (make-variable)))
|
|
||||||
(loop for a in (list (make-compound p x y) (make-compound p x y z))
|
|
||||||
as b in (list (make-compound p y x) (make-compound p y x z))
|
|
||||||
nconc (list
|
|
||||||
;; (or (not (p x y)) (p x y)) and (or (not (p x y z)) (p y x z))
|
|
||||||
(list (make-compound *or* (make-compound *not* a) b)
|
|
||||||
(list 'note-relation-commutative p))
|
|
||||||
;; (implies (p x y) (p y x)) and (implies (p x y z) (p y x z))
|
|
||||||
(list (make-compound *implies* a b)
|
|
||||||
(list 'note-relation-commutative p))))))
|
|
||||||
|
|
||||||
(defun relation-identity-tests ()
|
|
||||||
(let ((p (make-function-symbol (gensym) 3))
|
|
||||||
(e (gensym))
|
|
||||||
(x (make-variable)))
|
|
||||||
(list
|
|
||||||
;; (p e x x)
|
|
||||||
(list (make-compound p e x x)
|
|
||||||
(list 'note-relation-left-identity p e))
|
|
||||||
;; (p x e x)
|
|
||||||
(list (make-compound p x e x)
|
|
||||||
(list 'note-relation-right-identity p e)))))
|
|
||||||
|
|
||||||
(defun relation-inverse-tests ()
|
|
||||||
(let ((p (make-function-symbol (gensym) 3))
|
|
||||||
(g (make-function-symbol (gensym) 1))
|
|
||||||
(e (gensym))
|
|
||||||
(x (make-variable)))
|
|
||||||
(list
|
|
||||||
;; (p (g x) x e)
|
|
||||||
(list (make-compound p (make-compound g x) x e)
|
|
||||||
(list 'note-relation-left-inverse p g e))
|
|
||||||
;; (p x (g x) e)
|
|
||||||
(list (make-compound p x (make-compound g x) e)
|
|
||||||
(list 'note-relation-right-inverse p g e)))))
|
|
||||||
|
|
||||||
(defun relation-functionality-tests ()
|
|
||||||
(let ((p (make-function-symbol (gensym) 3))
|
|
||||||
(x (make-variable))
|
|
||||||
(y (make-variable))
|
|
||||||
(z1 (make-variable))
|
|
||||||
(z2 (make-variable)))
|
|
||||||
(let ((a (make-compound p x y z1))
|
|
||||||
(b (make-compound p x y z2))
|
|
||||||
(c (make-equality0 z1 z2)))
|
|
||||||
(list
|
|
||||||
;; (or (not (p x y z1)) (not (p x y z2)) (= z1 z2))
|
|
||||||
(list
|
|
||||||
(make-compound *or*
|
|
||||||
(make-compound *not* a)
|
|
||||||
(make-compound *not* b)
|
|
||||||
c)
|
|
||||||
(list 'note-relation-functional p))
|
|
||||||
;; (implies (and (p x y z1) (p x y z2)) (= z1 z2))
|
|
||||||
(list
|
|
||||||
(make-compound *implies*
|
|
||||||
(make-compound *and* a b)
|
|
||||||
c)
|
|
||||||
(list 'note-relation-functional p))))))
|
|
||||||
|
|
||||||
(defun relation-closure-tests ()
|
|
||||||
(let ((p (make-function-symbol (gensym) 3))
|
|
||||||
(f (make-function-symbol (gensym) 2))
|
|
||||||
(x (make-variable))
|
|
||||||
(y (make-variable)))
|
|
||||||
(list
|
|
||||||
(list
|
|
||||||
(make-compound p x y (make-compound f x y))
|
|
||||||
(list 'note-relation-closure p f)))))
|
|
||||||
|
|
||||||
(defun initialize-assertion-analysis ()
|
|
||||||
(setf *assertion-analysis-function-info* (make-sparse-vector))
|
|
||||||
(setf *assertion-analysis-relation-info* (make-sparse-vector))
|
|
||||||
(setf *assertion-analysis-patterns*
|
|
||||||
(nconc (function-associativity-tests)
|
|
||||||
(function-commutativity-tests)
|
|
||||||
(function-identity-tests)
|
|
||||||
(function-inverse-tests)
|
|
||||||
(relation-associativity-tests)
|
|
||||||
(relation-commutativity-tests)
|
|
||||||
(relation-identity-tests)
|
|
||||||
(relation-inverse-tests)
|
|
||||||
(relation-functionality-tests)
|
|
||||||
(relation-closure-tests)
|
|
||||||
))
|
|
||||||
nil)
|
|
||||||
|
|
||||||
(defun assertion-analysis (row)
|
|
||||||
(prog->
|
|
||||||
(when (row-bare-p row)
|
|
||||||
(row-wff row -> wff)
|
|
||||||
(identity wff -> *wff*)
|
|
||||||
(quote t -> *extended-variant*)
|
|
||||||
(dolist *assertion-analysis-patterns* ->* x)
|
|
||||||
(variant (first x) wff nil nil ->* varpairs)
|
|
||||||
(sublis varpairs (second x) -> decl)
|
|
||||||
(apply (first decl) (rest decl))
|
|
||||||
(return-from assertion-analysis))))
|
|
||||||
|
|
||||||
(defun maybe-declare-function-associative (f)
|
|
||||||
(unless (function-associative f)
|
|
||||||
(when (or (use-associative-unification?) (function-commutative f))
|
|
||||||
(with-standard-io-syntax2
|
|
||||||
(if (function-commutative f)
|
|
||||||
(format t "~%; Declaring ~A to be associative-commutative." (function-name f))
|
|
||||||
(format t "~%; Declaring ~A to be associative." (function-name f))))
|
|
||||||
(declare-function (function-name f) (function-arity f) :associative t))))
|
|
||||||
|
|
||||||
(defun maybe-declare-function-commutative (f)
|
|
||||||
(unless (function-commutative f)
|
|
||||||
(with-standard-io-syntax2
|
|
||||||
(if (function-associative f)
|
|
||||||
(format t "~%; Declaring ~A to be associative-commutative." (function-name f))
|
|
||||||
(format t "~%; Declaring ~A to be commutative." (function-name f))))
|
|
||||||
(declare-function (function-name f) (function-arity f) :commutative t)))
|
|
||||||
|
|
||||||
(defun maybe-declare-relation-commutative (p)
|
|
||||||
(unless (function-commutative p)
|
|
||||||
(with-standard-io-syntax2
|
|
||||||
(format t "~%; Declaring ~A to be commutative." (function-name p)))
|
|
||||||
(declare-relation (function-name p) (function-arity p) :commutative t)))
|
|
||||||
|
|
||||||
(defun maybe-declare-function-identity (f e)
|
|
||||||
(unless (neq none (function-identity f))
|
|
||||||
(when (and (use-associative-identity?) (function-associative f) (or (use-associative-unification?) (function-commutative f)))
|
|
||||||
(with-standard-io-syntax2
|
|
||||||
(format t "~%; Declaring ~A to have identity ~A." (function-name f) e))
|
|
||||||
(declare-function (function-name f) (function-arity f) :identity e))))
|
|
||||||
|
|
||||||
(defun aa-relation-associative (p)
|
|
||||||
(if (or (aa-relation-commutative p)
|
|
||||||
(function-commutative (aa-relation-relation p)))
|
|
||||||
(or (aa-relation-assoc1-p p) (aa-relation-assoc2-p p))
|
|
||||||
(and (aa-relation-assoc1-p p) (aa-relation-assoc2-p p))))
|
|
||||||
|
|
||||||
(defun complete-assertion-analysis ()
|
|
||||||
(prog->
|
|
||||||
(map-sparse-vector *assertion-analysis-function-info* ->* f)
|
|
||||||
(when (aa-function-commutative f)
|
|
||||||
(maybe-declare-function-commutative (aa-function-function f)))
|
|
||||||
(when (aa-function-associative f)
|
|
||||||
(maybe-declare-function-associative (aa-function-function f))))
|
|
||||||
(prog->
|
|
||||||
(map-sparse-vector *assertion-analysis-relation-info* ->* p)
|
|
||||||
(when (aa-relation-commutative p)
|
|
||||||
(maybe-declare-relation-commutative (aa-relation-relation p))
|
|
||||||
(when (aa-relation-functional-p p)
|
|
||||||
(dolist (f (aa-relation-closure-functions p))
|
|
||||||
(maybe-declare-function-commutative f))))
|
|
||||||
(when (aa-relation-associative p)
|
|
||||||
(when (aa-relation-functional-p p)
|
|
||||||
(dolist (f (aa-relation-closure-functions p))
|
|
||||||
(maybe-declare-function-associative f)))))
|
|
||||||
(prog->
|
|
||||||
(map-sparse-vector *assertion-analysis-function-info* ->* f)
|
|
||||||
(aa-function-left-identities f -> left-identities)
|
|
||||||
(aa-function-right-identities f -> right-identities)
|
|
||||||
(aa-function-function f -> f)
|
|
||||||
(if (function-commutative f) (union left-identities right-identities) (intersection left-identities right-identities) -> identities)
|
|
||||||
(when (and identities (null (rest identities)))
|
|
||||||
(maybe-declare-function-identity f (first identities))))
|
|
||||||
(prog->
|
|
||||||
(map-sparse-vector *assertion-analysis-relation-info* ->* p)
|
|
||||||
(aa-relation-left-identities p -> left-identities)
|
|
||||||
(aa-relation-right-identities p -> right-identities)
|
|
||||||
(when (and (or left-identities right-identities) (aa-relation-functional-p p))
|
|
||||||
(dolist (aa-relation-closure-functions p) ->* f)
|
|
||||||
(if (function-commutative f) (union left-identities right-identities) (intersection left-identities right-identities) -> identities)
|
|
||||||
(when (and identities (null (rest identities)))
|
|
||||||
(maybe-declare-function-identity f (first identities))))))
|
|
||||||
|
|
||||||
(define-plist-slot-accessor row :pure)
|
|
||||||
|
|
||||||
(defun atom-rel# (atom)
|
|
||||||
(dereference
|
|
||||||
atom nil
|
|
||||||
:if-constant (constant-number atom)
|
|
||||||
:if-compound (function-number (head atom))))
|
|
||||||
|
|
||||||
(defun purity-test (row-mapper)
|
|
||||||
(let ((relation-reference-counts (make-sparse-vector :default-value 0)))
|
|
||||||
(flet ((adjust-reference-counts (row n)
|
|
||||||
(prog->
|
|
||||||
(map-atoms-in-wff (row-wff row) ->* atom polarity)
|
|
||||||
(atom-rel# atom -> rel#)
|
|
||||||
(ecase polarity
|
|
||||||
(:pos
|
|
||||||
(incf (sparef relation-reference-counts rel#) n))
|
|
||||||
(:neg
|
|
||||||
(incf (sparef relation-reference-counts (- rel#)) n))
|
|
||||||
(:both
|
|
||||||
(incf (sparef relation-reference-counts rel#) n)
|
|
||||||
(incf (sparef relation-reference-counts (- rel#)) n))))))
|
|
||||||
;; count occurrences of signed relations
|
|
||||||
(prog->
|
|
||||||
(funcall row-mapper ->* row)
|
|
||||||
(unless (or (row-hint-p row) (eq :checking (row-pure row)))
|
|
||||||
;; row might be mapped more than once, put :checking in pure slot and count once
|
|
||||||
(setf (row-pure row) :checking)
|
|
||||||
(adjust-reference-counts row 1)))
|
|
||||||
(loop
|
|
||||||
(when (print-pure-rows?)
|
|
||||||
(with-clock-on printing
|
|
||||||
(format t "~2&; Purity test finds")
|
|
||||||
(prog->
|
|
||||||
(map-sparse-vector-with-indexes relation-reference-counts ->* count signedrel#)
|
|
||||||
(abs signedrel# -> rel#)
|
|
||||||
(if (= signedrel# rel#) (- rel#) rel# -> oppsignedrel#)
|
|
||||||
(sparef relation-reference-counts oppsignedrel# -> oppcount)
|
|
||||||
(unless (and (< 0 signedrel#) (< 0 oppcount))
|
|
||||||
(format t "~%; ~5D positive and ~5D negative occurrences of ~S."
|
|
||||||
(if (< 0 signedrel#) count oppcount)
|
|
||||||
(if (> 0 signedrel#) count oppcount)
|
|
||||||
(symbol-numbered rel#))))))
|
|
||||||
(let ((purerels nil))
|
|
||||||
;; list in purerels relations that occur only positively or only negatively
|
|
||||||
(prog->
|
|
||||||
(map-sparse-vector-indexes-only relation-reference-counts ->* signedrel#)
|
|
||||||
(abs signedrel# -> rel#)
|
|
||||||
(if (= signedrel# rel#) (- rel#) rel# -> oppsignedrel#)
|
|
||||||
(when (= 0 (sparef relation-reference-counts oppsignedrel#))
|
|
||||||
(symbol-numbered rel# -> symbol)
|
|
||||||
(if (< 0 signedrel#) "positively" "negatively" -> sign)
|
|
||||||
(cond
|
|
||||||
((not (function-symbol-p symbol))
|
|
||||||
(push rel# purerels)
|
|
||||||
(warn "~S is a proposition that occurs only ~A; disabling rows that contain it." symbol sign))
|
|
||||||
((or (eq *=* symbol)
|
|
||||||
(function-rewrite-code symbol)
|
|
||||||
(if (< 0 signedrel#) (function-falsify-code symbol) (function-satisfy-code symbol)))
|
|
||||||
)
|
|
||||||
((integerp (function-arity symbol))
|
|
||||||
(push rel# purerels)
|
|
||||||
(warn "~S is a ~D-ary relation that occurs only ~A; disabling rows that contain it." symbol (function-arity symbol) sign))
|
|
||||||
(t
|
|
||||||
(push rel# purerels)
|
|
||||||
(warn "~S is a relation that occurs only ~A; disabling rows that contain it." symbol sign)))))
|
|
||||||
;; if purerels is empty, no (more) pure rows, remove :checking and return
|
|
||||||
(when (null purerels)
|
|
||||||
(prog->
|
|
||||||
(funcall row-mapper ->* row)
|
|
||||||
(when (eq :checking (row-pure row))
|
|
||||||
(setf (row-pure row) nil)))
|
|
||||||
(return))
|
|
||||||
;; if row contains a relation in purerels, mark it as pure and decrement reference counts
|
|
||||||
;; maybe some relations will be newly pure, so loop
|
|
||||||
(prog->
|
|
||||||
(funcall row-mapper ->* row)
|
|
||||||
(when (eq :checking (row-pure row))
|
|
||||||
(when (prog->
|
|
||||||
(map-atoms-in-wff (row-wff row) ->* atom polarity)
|
|
||||||
(declare (ignore polarity))
|
|
||||||
(when (member (atom-rel# atom) purerels)
|
|
||||||
(return-from prog-> t)))
|
|
||||||
(setf (row-pure row) t)
|
|
||||||
(adjust-reference-counts row -1)
|
|
||||||
(print-pure-row row))))))
|
|
||||||
nil)))
|
|
||||||
|
|
||||||
;;; assertion-analysis.lisp EOF
|
|
Binary file not shown.
|
@ -1,262 +0,0 @@
|
||||||
;;; -*- Mode: Lisp; Syntax: Common-Lisp; Package: snark -*-
|
|
||||||
;;; File: assertion-file.lisp
|
|
||||||
;;; The contents of this file are subject to the Mozilla Public License
|
|
||||||
;;; Version 1.1 (the "License"); you may not use this file except in
|
|
||||||
;;; compliance with the License. You may obtain a copy of the License at
|
|
||||||
;;; http://www.mozilla.org/MPL/
|
|
||||||
;;;
|
|
||||||
;;; Software distributed under the License is distributed on an "AS IS"
|
|
||||||
;;; basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the
|
|
||||||
;;; License for the specific language governing rights and limitations
|
|
||||||
;;; under the License.
|
|
||||||
;;;
|
|
||||||
;;; The Original Code is SNARK.
|
|
||||||
;;; The Initial Developer of the Original Code is SRI International.
|
|
||||||
;;; Portions created by the Initial Developer are Copyright (C) 1981-2012.
|
|
||||||
;;; All Rights Reserved.
|
|
||||||
;;;
|
|
||||||
;;; Contributor(s): Mark E. Stickel <stickel@ai.sri.com>.
|
|
||||||
|
|
||||||
(in-package :snark)
|
|
||||||
|
|
||||||
(defmacro in-language (language)
|
|
||||||
(declare (ignore language))
|
|
||||||
`(warn "Ignoring IN-LANGUAGE form."))
|
|
||||||
|
|
||||||
(defmacro in-kb (kb)
|
|
||||||
;; use suspend/resume for this? okbc calls?
|
|
||||||
(declare (ignore kb))
|
|
||||||
`(warn "Ignoring IN-KB form."))
|
|
||||||
|
|
||||||
(defmacro has-author (author)
|
|
||||||
`(setf *form-author* ',author))
|
|
||||||
|
|
||||||
(defmacro has-documentation (documentation)
|
|
||||||
`(setf *form-documentation* ',documentation))
|
|
||||||
|
|
||||||
(defmacro has-name (name)
|
|
||||||
`(setf *form-name* ',name))
|
|
||||||
|
|
||||||
(defmacro has-source (source)
|
|
||||||
`(setf *form-source* ',source))
|
|
||||||
|
|
||||||
(declare-snark-option assertion-file-commands
|
|
||||||
'(assertion
|
|
||||||
has-author ;has-xxx specifies xxx for later assertions
|
|
||||||
has-documentation
|
|
||||||
has-name
|
|
||||||
has-source
|
|
||||||
in-package
|
|
||||||
in-language
|
|
||||||
in-kb
|
|
||||||
declare-constant
|
|
||||||
declare-function
|
|
||||||
declare-relation
|
|
||||||
declare-sort
|
|
||||||
declare-subsort
|
|
||||||
declare-sorts-incompatible
|
|
||||||
declare-tptp-sort
|
|
||||||
) ;every other form is an assertion
|
|
||||||
:never-print)
|
|
||||||
|
|
||||||
(declare-snark-option assertion-file-keywords
|
|
||||||
'((:author *form-author*)
|
|
||||||
(:documentation *form-documentation*)
|
|
||||||
(:name *form-name*)
|
|
||||||
(:source *form-source*))
|
|
||||||
:never-print)
|
|
||||||
|
|
||||||
(declare-snark-option assertion-file-format nil :never-print)
|
|
||||||
(declare-snark-option assertion-file-if-does-not-exist :error :never-print)
|
|
||||||
(declare-snark-option assertion-file-verbose nil :never-print)
|
|
||||||
(declare-snark-option assertion-file-package :snark-user :never-print)
|
|
||||||
(declare-snark-option assertion-file-readtable nil :never-print)
|
|
||||||
(declare-snark-option assertion-file-negate-conjectures nil :never-print)
|
|
||||||
|
|
||||||
(defun read-assertion-file (filespec
|
|
||||||
&key
|
|
||||||
(format (assertion-file-format?))
|
|
||||||
(if-does-not-exist (assertion-file-if-does-not-exist?))
|
|
||||||
(verbose (assertion-file-verbose?))
|
|
||||||
(package (or (assertion-file-package?) *package*))
|
|
||||||
(readtable (or (assertion-file-readtable?) *readtable*))
|
|
||||||
(negate-conjectures (assertion-file-negate-conjectures?))
|
|
||||||
hash-dollar
|
|
||||||
(clock t))
|
|
||||||
;; read-asssertion-file executes commands and return a list of calls on 'assertion'
|
|
||||||
;; every form that is not a command (commands are named in (assertion-file-commands?))
|
|
||||||
;; is treated as a formula to be asserted
|
|
||||||
(declare (ignorable verbose hash-dollar))
|
|
||||||
(let ((sort-declarations nil)
|
|
||||||
(subsort-declarations nil))
|
|
||||||
(labels
|
|
||||||
((raf0 ()
|
|
||||||
(prog->
|
|
||||||
(identity readtable -> *readtable*)
|
|
||||||
(identity (assertion-file-commands?) -> commands)
|
|
||||||
(identity (assertion-file-keywords?) -> keywords)
|
|
||||||
(progv (mapcar #'second keywords)
|
|
||||||
(consn nil nil (length keywords))
|
|
||||||
(funcall (let ((type (pathname-type filespec)))
|
|
||||||
(cond
|
|
||||||
((or (string-equal "tptp" type) (string-equal "p" type) (string-equal "ax" type))
|
|
||||||
'mapnconc-tptp-file-forms)
|
|
||||||
((or (string-equal "lisp" type) (string-equal "kif" type))
|
|
||||||
'mapnconc-file-forms)
|
|
||||||
((eq :tptp format)
|
|
||||||
'mapnconc-tptp-file-forms)
|
|
||||||
(t
|
|
||||||
'mapnconc-file-forms)))
|
|
||||||
filespec
|
|
||||||
:if-does-not-exist if-does-not-exist
|
|
||||||
:package package
|
|
||||||
->* form)
|
|
||||||
(when form ;ignore nils
|
|
||||||
(and (consp form)
|
|
||||||
(symbolp (first form))
|
|
||||||
(first (member (first form) commands
|
|
||||||
:test #'string-equal ;command matching ignores package and case
|
|
||||||
:key #'symbol-name))
|
|
||||||
-> command)
|
|
||||||
(case command
|
|
||||||
((nil)
|
|
||||||
(setf form (list 'assertion form)))
|
|
||||||
(assertion
|
|
||||||
(setf form (cons command (append (rest form) nil)))
|
|
||||||
(setf command nil))
|
|
||||||
((declare-sort declare-tptp-sort)
|
|
||||||
(setf form (cons command (rest form)))
|
|
||||||
(push form sort-declarations))
|
|
||||||
(declare-subsort
|
|
||||||
(setf form (cons command (rest form)))
|
|
||||||
(push form subsort-declarations))
|
|
||||||
((declare-sorts-incompatible declare-constant declare-function declare-relation)
|
|
||||||
(setf form (cons command (rest form)))
|
|
||||||
(setf command nil))
|
|
||||||
(otherwise
|
|
||||||
(eval (cons command (rest form)))))
|
|
||||||
(unless command
|
|
||||||
(case (and (consp form) (first form))
|
|
||||||
(assertion
|
|
||||||
(cond
|
|
||||||
((getf (cddr form) :ignore)
|
|
||||||
nil)
|
|
||||||
(t
|
|
||||||
(when (and negate-conjectures (eq 'conjecture (getf (cddr form) :reason)))
|
|
||||||
(setf (second form) (list 'not (second form)))
|
|
||||||
(setf (getf (cddr form) :reason) 'negated_conjecture))
|
|
||||||
(dolist (x keywords)
|
|
||||||
(let ((v (symbol-value (second x))))
|
|
||||||
(when (and v (eq none (getf (cddr form) (first x) none)))
|
|
||||||
(nconc form (list (first x) v)))))
|
|
||||||
(list form))))
|
|
||||||
(otherwise
|
|
||||||
(list form))))))))
|
|
||||||
(raf ()
|
|
||||||
(let ((l (raf0)))
|
|
||||||
(cond
|
|
||||||
(subsort-declarations
|
|
||||||
(setf subsort-declarations (topological-sort (nreverse subsort-declarations) 'must-precede-in-assertion-file))
|
|
||||||
(setf l (append subsort-declarations l))
|
|
||||||
(dolist (x sort-declarations)
|
|
||||||
(unless (member (unquote (second x)) subsort-declarations :key #'(lambda (x) (unquote (second x))))
|
|
||||||
(push x l))))
|
|
||||||
(t
|
|
||||||
(dolist (x sort-declarations)
|
|
||||||
(push x l))))
|
|
||||||
l)))
|
|
||||||
(if clock
|
|
||||||
(with-clock-on read-assertion-file (raf))
|
|
||||||
(raf)))))
|
|
||||||
|
|
||||||
(defun must-precede-in-assertion-file (x y)
|
|
||||||
(ecase (first x)
|
|
||||||
((declare-sort declare-subsort)
|
|
||||||
(ecase (first y)
|
|
||||||
((declare-sort declare-subsort)
|
|
||||||
(leafp (unquote (second x)) y))
|
|
||||||
((declare-sorts-incompatible declare-constant declare-function declare-relation declare-proposition assertion)
|
|
||||||
t)))
|
|
||||||
(declare-sorts-incompatible
|
|
||||||
(ecase (first y)
|
|
||||||
((declare-sort declare-subsort declare-sorts-incompatible)
|
|
||||||
nil)
|
|
||||||
((declare-constant declare-function declare-relation declare-proposition assertion)
|
|
||||||
t)))
|
|
||||||
((declare-constant declare-function declare-relation declare-proposition)
|
|
||||||
(eq 'assertion (first y)))
|
|
||||||
(assertion
|
|
||||||
nil)))
|
|
||||||
|
|
||||||
(declare-snark-option refute-file-initialize t :never-print)
|
|
||||||
(declare-snark-option refute-file-closure t :never-print)
|
|
||||||
(declare-snark-option refute-file-options nil :never-print)
|
|
||||||
(declare-snark-option refute-file-actions nil :never-print)
|
|
||||||
(declare-snark-option refute-file-ignore-errors nil :never-print)
|
|
||||||
(declare-snark-option refute-file-verbose t :never-print)
|
|
||||||
(declare-snark-option refute-file-output-file nil :never-print)
|
|
||||||
(declare-snark-option refute-file-if-exists nil :never-print)
|
|
||||||
|
|
||||||
(defun refute-file (filespec
|
|
||||||
&key
|
|
||||||
(initialize (refute-file-initialize?))
|
|
||||||
(closure (refute-file-closure?))
|
|
||||||
(format (assertion-file-format?))
|
|
||||||
(options (refute-file-options?))
|
|
||||||
(actions (refute-file-actions?))
|
|
||||||
(ignore-errors (refute-file-ignore-errors?))
|
|
||||||
(verbose (refute-file-verbose?))
|
|
||||||
(output-file (refute-file-output-file?))
|
|
||||||
(if-exists (refute-file-if-exists?))
|
|
||||||
(package (or (assertion-file-package?) *package*))
|
|
||||||
(readtable (or (assertion-file-readtable?) *readtable*))
|
|
||||||
(use-coder nil))
|
|
||||||
(labels
|
|
||||||
((refute-file0 ()
|
|
||||||
(cond
|
|
||||||
(use-coder
|
|
||||||
(multiple-value-bind (axioms target op pred) (snark-user::condensed-detachment-problem-p (read-assertion-file filespec))
|
|
||||||
(declare (ignorable pred))
|
|
||||||
(if op
|
|
||||||
(snark-user::coder axioms target :op op :run-time-limit (if (numberp use-coder) use-coder nil))
|
|
||||||
(format t "~%Not recognized as a condensed-detachment problem."))))
|
|
||||||
(t
|
|
||||||
(when initialize
|
|
||||||
(initialize))
|
|
||||||
(mapc #'eval options)
|
|
||||||
(mapc #'eval (funcall 'read-assertion-file filespec
|
|
||||||
:format format
|
|
||||||
:package package
|
|
||||||
:readtable readtable))
|
|
||||||
(mapc #'eval actions)
|
|
||||||
(when closure
|
|
||||||
(or (let ((*szs-filespec* filespec)) (closure)) :done)))))
|
|
||||||
(refute-file1 ()
|
|
||||||
(if verbose
|
|
||||||
(let ((result (time (refute-file0))))
|
|
||||||
(case result
|
|
||||||
(:proof-found
|
|
||||||
(unless (member (print-final-rows?) '(:tptp :tptp-too))
|
|
||||||
(print-szs-status result nil filespec)))
|
|
||||||
((:run-time-limit :agenda-empty)
|
|
||||||
(print-szs-status result nil filespec)))
|
|
||||||
(prin1 result))
|
|
||||||
(refute-file0)))
|
|
||||||
(refute-file2 ()
|
|
||||||
(prog2
|
|
||||||
(when verbose
|
|
||||||
(format t "~&; Begin refute-file ~A " filespec) (print-current-time) (terpri))
|
|
||||||
(if ignore-errors
|
|
||||||
(mvlet (((values value condition) (ignore-errors (refute-file1))))
|
|
||||||
(or value (princ condition)))
|
|
||||||
(refute-file1))
|
|
||||||
(when verbose
|
|
||||||
(format t "~&; End refute-file ~A " filespec) (print-current-time) (terpri)))))
|
|
||||||
(if output-file
|
|
||||||
(with-open-file (stream output-file :direction :output :if-exists if-exists)
|
|
||||||
(when stream
|
|
||||||
(let ((*standard-output* stream) (*error-output* stream) (*trace-output* stream))
|
|
||||||
(refute-file2))))
|
|
||||||
(refute-file2))))
|
|
||||||
|
|
||||||
;;; assertion-file.lisp EOF
|
|
Binary file not shown.
|
@ -1,169 +0,0 @@
|
||||||
;;; -*- Mode: Lisp; Syntax: Common-Lisp; Package: snark-lisp -*-
|
|
||||||
;;; File: clocks.lisp
|
|
||||||
;;; The contents of this file are subject to the Mozilla Public License
|
|
||||||
;;; Version 1.1 (the "License"); you may not use this file except in
|
|
||||||
;;; compliance with the License. You may obtain a copy of the License at
|
|
||||||
;;; http://www.mozilla.org/MPL/
|
|
||||||
;;;
|
|
||||||
;;; Software distributed under the License is distributed on an "AS IS"
|
|
||||||
;;; basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the
|
|
||||||
;;; License for the specific language governing rights and limitations
|
|
||||||
;;; under the License.
|
|
||||||
;;;
|
|
||||||
;;; The Original Code is SNARK.
|
|
||||||
;;; The Initial Developer of the Original Code is SRI International.
|
|
||||||
;;; Portions created by the Initial Developer are Copyright (C) 1981-2011.
|
|
||||||
;;; All Rights Reserved.
|
|
||||||
;;;
|
|
||||||
;;; Contributor(s): Mark E. Stickel <stickel@ai.sri.com>.
|
|
||||||
|
|
||||||
(in-package :snark-lisp)
|
|
||||||
|
|
||||||
(defvar *clocks* nil)
|
|
||||||
|
|
||||||
(defun make-clock-variable (name)
|
|
||||||
(cl:assert (symbolp name))
|
|
||||||
(let* ((s (symbol-name name))
|
|
||||||
(v (intern (to-string "*%" s :-time%*) :snark-lisp))
|
|
||||||
(w (intern (to-string "*%" s :-count%*) :snark-lisp)))
|
|
||||||
(unless (assoc v *clocks*)
|
|
||||||
(setf *clocks* (nconc *clocks* (list (list v w))))
|
|
||||||
(proclaim `(special ,v ,w)))
|
|
||||||
(values v w)))
|
|
||||||
|
|
||||||
(mapc #'make-clock-variable
|
|
||||||
'(
|
|
||||||
read-assertion-file
|
|
||||||
assert
|
|
||||||
process-new-row
|
|
||||||
resolution
|
|
||||||
paramodulation
|
|
||||||
factoring
|
|
||||||
equality-factoring
|
|
||||||
embedding
|
|
||||||
condensing
|
|
||||||
forward-subsumption
|
|
||||||
backward-subsumption
|
|
||||||
clause-clause-subsumption
|
|
||||||
forward-simplification
|
|
||||||
backward-simplification
|
|
||||||
ordering
|
|
||||||
ordering-ac
|
|
||||||
sortal-reasoning
|
|
||||||
temporal-reasoning
|
|
||||||
constraint-simplification
|
|
||||||
term-hashing
|
|
||||||
path-indexing
|
|
||||||
instance-graph-insertion
|
|
||||||
purity-testing
|
|
||||||
relevance-testing
|
|
||||||
satisfiability-testing
|
|
||||||
printing
|
|
||||||
halted
|
|
||||||
test1
|
|
||||||
test2
|
|
||||||
test3
|
|
||||||
))
|
|
||||||
|
|
||||||
(defvar *excluded-clocks* '(*%printing-time%* *%halted-time%*))
|
|
||||||
|
|
||||||
(defvar *running-clocks* nil)
|
|
||||||
(defvar *first-real-time-value* 0)
|
|
||||||
(defvar *first-run-time-value* 0)
|
|
||||||
(defvar *last-run-time-value* 0)
|
|
||||||
(defvar *run-time-mark* 0)
|
|
||||||
(declaim (type integer *first-real-time-value* *first-run-time-value* *last-run-time-value* *run-time-mark*))
|
|
||||||
(defvar *total-seconds* 0.0)
|
|
||||||
|
|
||||||
(defun initialize-clocks (&optional (excluded-clocks *excluded-clocks*))
|
|
||||||
(cl:assert (null *running-clocks*))
|
|
||||||
(setf *first-real-time-value* (get-internal-real-time))
|
|
||||||
(setf *run-time-mark* (setf *first-run-time-value* (get-internal-run-time)))
|
|
||||||
(setf *excluded-clocks* excluded-clocks)
|
|
||||||
(dolist (l *clocks*)
|
|
||||||
(dolist (v l)
|
|
||||||
(setf (symbol-value v) 0))))
|
|
||||||
|
|
||||||
(defmacro with-clock-on (clock &body body)
|
|
||||||
(let (count)
|
|
||||||
(setf (values clock count) (make-clock-variable clock))
|
|
||||||
(let ((previously-running-clocks (make-symbol (symbol-name 'previously-running-clocks)))
|
|
||||||
(first-previously-running-clock (make-symbol (symbol-name 'first-previously-running-clock))))
|
|
||||||
`(let* ((,previously-running-clocks *running-clocks*)
|
|
||||||
(,first-previously-running-clock (first ,previously-running-clocks)))
|
|
||||||
(unless (eq ',clock ,first-previously-running-clock)
|
|
||||||
(if ,previously-running-clocks
|
|
||||||
(decf (symbol-value ,first-previously-running-clock) (- *last-run-time-value* (setf *last-run-time-value* (get-internal-run-time))))
|
|
||||||
(setf *last-run-time-value* (get-internal-run-time)))
|
|
||||||
(incf (symbol-value ',count))
|
|
||||||
(setf *running-clocks* (cons ',clock ,previously-running-clocks)))
|
|
||||||
(unwind-protect
|
|
||||||
(progn ,@body)
|
|
||||||
(unless (eq ',clock ,first-previously-running-clock)
|
|
||||||
(setf *running-clocks* ,previously-running-clocks)
|
|
||||||
(decf (symbol-value ',clock) (- *last-run-time-value* (setf *last-run-time-value* (get-internal-run-time))))))))))
|
|
||||||
|
|
||||||
(defmacro with-clock-off (clock &body body)
|
|
||||||
;; dummy with-clock-on
|
|
||||||
(make-clock-variable clock)
|
|
||||||
`(progn ,@body))
|
|
||||||
|
|
||||||
(defun clock-name (clock)
|
|
||||||
(let ((name (symbol-name clock)))
|
|
||||||
(nsubstitute #\ #\- (subseq name 2 (- (length name) 7)))))
|
|
||||||
|
|
||||||
(defun print-clocks (&optional (excluded-clocks *excluded-clocks*))
|
|
||||||
(let ((total-ticks (- (get-internal-run-time) *first-run-time-value*))
|
|
||||||
(time-included 0)
|
|
||||||
(time-excluded 0))
|
|
||||||
(format t "~%; Run time in seconds")
|
|
||||||
(dolist (l *clocks*)
|
|
||||||
(let* ((clk (first l))
|
|
||||||
(run-time (symbol-value clk)))
|
|
||||||
(cond
|
|
||||||
((eql 0 run-time)
|
|
||||||
)
|
|
||||||
((member clk excluded-clocks)
|
|
||||||
(format t (if (eql 0 time-excluded) " excluding ~(~A~)" ", ~(~A~)") (clock-name clk))
|
|
||||||
(incf time-excluded run-time))
|
|
||||||
(t
|
|
||||||
(incf time-included run-time)))))
|
|
||||||
(unless (eql 0 time-excluded)
|
|
||||||
(decf total-ticks time-excluded)
|
|
||||||
(format t " time"))
|
|
||||||
(princ ":")
|
|
||||||
(dolist (l *clocks*)
|
|
||||||
(let ((clk (first l))
|
|
||||||
(cnt (second l)))
|
|
||||||
(unless (member clk excluded-clocks)
|
|
||||||
(let ((run-time (symbol-value clk))
|
|
||||||
(count (symbol-value cnt)))
|
|
||||||
(unless (eql 0 count)
|
|
||||||
(format t "~%;~10,3F ~3D% ~@(~A~)~48T(~:D call~:P)"
|
|
||||||
(/ run-time (float internal-time-units-per-second))
|
|
||||||
(if (eql 0 total-ticks) 0 (percentage run-time total-ticks))
|
|
||||||
(clock-name clk)
|
|
||||||
count))))))
|
|
||||||
(let ((other-time (- total-ticks time-included)))
|
|
||||||
(format t "~%;~10,3F ~3D% Other"
|
|
||||||
(/ other-time (float internal-time-units-per-second))
|
|
||||||
(if (eql 0 total-ticks) 0 (percentage other-time total-ticks))))
|
|
||||||
(setf *total-seconds* (/ total-ticks (float internal-time-units-per-second)))
|
|
||||||
(format t "~%;~10,3F Total" *total-seconds*)
|
|
||||||
(format t "~%;~10,3F Real time" (/ (- (get-internal-real-time) *first-real-time-value*) (float internal-time-units-per-second)))
|
|
||||||
*total-seconds*))
|
|
||||||
|
|
||||||
(defun total-run-time (&optional (excluded-clocks *excluded-clocks*))
|
|
||||||
(let ((total-ticks (- (get-internal-run-time) *first-run-time-value*)))
|
|
||||||
(dolist (l *clocks*)
|
|
||||||
(let ((clk (first l)))
|
|
||||||
(when (member clk excluded-clocks)
|
|
||||||
(decf total-ticks (symbol-value clk)))))
|
|
||||||
(/ total-ticks (float internal-time-units-per-second))))
|
|
||||||
|
|
||||||
(defun print-incremental-time-used ()
|
|
||||||
(let ((time (get-internal-run-time)))
|
|
||||||
(format t " ;~,3Fsec" (/ (- time *run-time-mark*) (float internal-time-units-per-second)))
|
|
||||||
(setf *run-time-mark* time)))
|
|
||||||
|
|
||||||
;;; clocks.lisp EOF
|
|
|
@ -1,66 +0,0 @@
|
||||||
;;; -*- Mode: Lisp; Syntax: Common-Lisp; Package: snark -*-
|
|
||||||
;;; File: closure1.lisp
|
|
||||||
;;; The contents of this file are subject to the Mozilla Public License
|
|
||||||
;;; Version 1.1 (the "License"); you may not use this file except in
|
|
||||||
;;; compliance with the License. You may obtain a copy of the License at
|
|
||||||
;;; http://www.mozilla.org/MPL/
|
|
||||||
;;;
|
|
||||||
;;; Software distributed under the License is distributed on an "AS IS"
|
|
||||||
;;; basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the
|
|
||||||
;;; License for the specific language governing rights and limitations
|
|
||||||
;;; under the License.
|
|
||||||
;;;
|
|
||||||
;;; The Original Code is SNARK.
|
|
||||||
;;; The Initial Developer of the Original Code is SRI International.
|
|
||||||
;;; Portions created by the Initial Developer are Copyright (C) 1981-2012.
|
|
||||||
;;; All Rights Reserved.
|
|
||||||
;;;
|
|
||||||
;;; Contributor(s): Mark E. Stickel <stickel@ai.sri.com>.
|
|
||||||
|
|
||||||
(in-package :snark)
|
|
||||||
|
|
||||||
;;; simple closure algorithm for small deduction tasks
|
|
||||||
;;; that do not require features like indexing for performance
|
|
||||||
|
|
||||||
(defun closure1 (items &key done unary-rules binary-rules ternary-rules (subsumption-test #'equal))
|
|
||||||
;; compute closure of the union of items and done using rules and subsumption-test
|
|
||||||
;; if done is given as an argument, it is assumed to be closed already
|
|
||||||
(flet ((unsubsumed (l1 l2 subsumption-test)
|
|
||||||
;; return items in l2 that are not subsumed by any item in l1
|
|
||||||
(delete-if #'(lambda (item2)
|
|
||||||
(some #'(lambda (item1)
|
|
||||||
(funcall subsumption-test item1 item2))
|
|
||||||
l1))
|
|
||||||
l2)))
|
|
||||||
(let ((todo (make-deque)))
|
|
||||||
(dolist (item items)
|
|
||||||
(deque-push-last todo item))
|
|
||||||
(loop
|
|
||||||
(when (deque-empty? todo)
|
|
||||||
(return done))
|
|
||||||
(let ((item1 (deque-pop-first todo)))
|
|
||||||
(when (unsubsumed done (list item1) subsumption-test)
|
|
||||||
(setf done (cons item1 (unsubsumed (list item1) done subsumption-test)))
|
|
||||||
(prog->
|
|
||||||
(dolist unary-rules ->* rule)
|
|
||||||
(funcall rule item1 ->* new-item)
|
|
||||||
(when (eq :inconsistent new-item)
|
|
||||||
(return-from closure1 new-item))
|
|
||||||
(deque-push-last todo new-item))
|
|
||||||
(prog->
|
|
||||||
(dolist binary-rules ->* rule)
|
|
||||||
(dolist done ->* item2)
|
|
||||||
(funcall rule item1 item2 ->* new-item)
|
|
||||||
(when (eq :inconsistent new-item)
|
|
||||||
(return-from closure1 new-item))
|
|
||||||
(deque-push-last todo new-item))
|
|
||||||
(prog->
|
|
||||||
(dolist ternary-rules ->* rule)
|
|
||||||
(dolist done ->* item2)
|
|
||||||
(dolist done ->* item3)
|
|
||||||
(funcall rule item1 item2 item3 ->* new-item)
|
|
||||||
(when (eq :inconsistent new-item)
|
|
||||||
(return-from closure1 new-item))
|
|
||||||
(deque-push-last todo new-item))))))))
|
|
||||||
|
|
||||||
;;; closure1.lisp EOF
|
|
Binary file not shown.
|
@ -1,116 +0,0 @@
|
||||||
;;; -*- Mode: Lisp; Syntax: Common-Lisp; Package: snark -*-
|
|
||||||
;;; File: code-for-bags4.lisp
|
|
||||||
;;; The contents of this file are subject to the Mozilla Public License
|
|
||||||
;;; Version 1.1 (the "License"); you may not use this file except in
|
|
||||||
;;; compliance with the License. You may obtain a copy of the License at
|
|
||||||
;;; http://www.mozilla.org/MPL/
|
|
||||||
;;;
|
|
||||||
;;; Software distributed under the License is distributed on an "AS IS"
|
|
||||||
;;; basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the
|
|
||||||
;;; License for the specific language governing rights and limitations
|
|
||||||
;;; under the License.
|
|
||||||
;;;
|
|
||||||
;;; The Original Code is SNARK.
|
|
||||||
;;; The Initial Developer of the Original Code is SRI International.
|
|
||||||
;;; Portions created by the Initial Developer are Copyright (C) 1981-2012.
|
|
||||||
;;; All Rights Reserved.
|
|
||||||
;;;
|
|
||||||
;;; Contributor(s): Mark E. Stickel <stickel@ai.sri.com>.
|
|
||||||
|
|
||||||
(in-package :snark)
|
|
||||||
|
|
||||||
(defvar *singleton-bag*)
|
|
||||||
(defvar *bag-union*)
|
|
||||||
|
|
||||||
;;; $$bag and $$bag* terms are translated into a standardized internal representation for bags
|
|
||||||
;;; that has $$$bag-union as the top function symbol
|
|
||||||
;;; ($$bag) -> ($$bag-union)
|
|
||||||
;;; ($$bag a) -> ($$bag-union ($$singleton-bag a))
|
|
||||||
;;; ($$bag a b) -> ($$bag-union ($$singleton-bag a) ($$singleton-bag b))
|
|
||||||
;;; ($$bag a b c) -> ($$bag-union ($$singleton-bag a) ($$singleton-bag b) ($$singleton-bag c))
|
|
||||||
;;; ($$bag* a) -> ($$bag-union a)
|
|
||||||
;;; ($$bag* a b) -> ($$bag-union ($$singleton-bag a) b)
|
|
||||||
;;; ($$bag* a b c) -> ($$bag-union ($$singleton-bag a) ($$singleton-bag b) c)
|
|
||||||
|
|
||||||
;;; variables and terms that represent bags should always be enclosed in bag-union, bag, or bag* symbols
|
|
||||||
;;; (bag-union a ?x) and a are not recognized as unifiable because they have different head symbols
|
|
||||||
;;; (bag-union a ?x) and (bag-union a) can be unified
|
|
||||||
|
|
||||||
(defun declare-code-for-bags ()
|
|
||||||
(declare-subsort 'bag :top-sort-a)
|
|
||||||
(declare-characteristic-relation '$$bagp #'bagp 'bag)
|
|
||||||
(declare-function1 '$$bag :any :macro t :input-code 'input-bag-term)
|
|
||||||
(declare-function1 '$$bag* :any :macro t :input-code 'input-bag*-term)
|
|
||||||
(setf *singleton-bag* ;should only be used as argument of bag-union
|
|
||||||
(declare-function1 '$$singleton-bag 1 ;unexported symbol that shouldn't be visible to user
|
|
||||||
:sort 'bag
|
|
||||||
:constructor t))
|
|
||||||
(setf *bag-union*
|
|
||||||
(declare-function1 '$$bag-union 2
|
|
||||||
:sort '(bag (t bag))
|
|
||||||
:associative t
|
|
||||||
:commutative t
|
|
||||||
:identity '(function) ;use (bag-union) as identity
|
|
||||||
:keep-head t
|
|
||||||
:to-lisp-code 'bag-union-term-to-lisp))
|
|
||||||
(declare-ordering-greaterp '$$bag-union '$$singleton-bag)
|
|
||||||
(declare-function1 '$$bag-to-list 1 :sort 'list :rewrite-code #'(lambda (x s) (bag-to-list (arg1 x) s)))
|
|
||||||
(declare-function1 '$$list-to-bag 1 :sort 'bag :rewrite-code #'(lambda (x s) (list-to-bag (arg1 x) s)))
|
|
||||||
nil)
|
|
||||||
|
|
||||||
(defun bagp (x &optional subst)
|
|
||||||
(dereference x subst :if-compound-appl (eq *bag-union* (heada x))))
|
|
||||||
|
|
||||||
(defun input-bag-term (head args polarity)
|
|
||||||
(declare (ignore head))
|
|
||||||
(input-term1 `($$bag-union ,@(mapcar #'(lambda (arg) `($$singleton-bag ,arg)) args)) polarity))
|
|
||||||
|
|
||||||
(defun input-bag*-term (head args polarity)
|
|
||||||
(require-n-or-more-arguments head args polarity 1)
|
|
||||||
(input-term1 `($$bag-union ,@(mapcar #'(lambda (arg) `($$singleton-bag ,arg)) (butlast args)) ,(first (last args))) polarity))
|
|
||||||
|
|
||||||
(defun bag-union-term-to-lisp (head args subst)
|
|
||||||
(mvlet* (((:values u v) (split-if #'(lambda (x) (dereference x subst :if-compound-appl (eq *singleton-bag* (heada x))))
|
|
||||||
(argument-list-a1 head args subst)))
|
|
||||||
(u (mapcar #'(lambda (x) (dereference x subst) (term-to-lisp (arg1a x) subst)) u))
|
|
||||||
(v (mapcar #'(lambda (x) (term-to-lisp x subst)) v)))
|
|
||||||
(cond
|
|
||||||
((null v)
|
|
||||||
`(,(current-function-name '$$bag :any) ,@u))
|
|
||||||
((null u)
|
|
||||||
`(,(function-name *bag-union*) ,@v))
|
|
||||||
(t
|
|
||||||
`(,(function-name *bag-union*) (,(current-function-name '$$bag :any) ,@u) ,@v)))))
|
|
||||||
|
|
||||||
(defun bag-to-list (bag &optional subst)
|
|
||||||
(dereference
|
|
||||||
bag subst
|
|
||||||
:if-variable none
|
|
||||||
:if-constant none
|
|
||||||
:if-compound-cons none
|
|
||||||
:if-compound-appl (cond
|
|
||||||
((eq *bag-union* (heada bag))
|
|
||||||
(mapcar #'(lambda (x)
|
|
||||||
(if (dereference x subst :if-compound-appl (eq *singleton-bag* (heada x)))
|
|
||||||
(first (argsa x))
|
|
||||||
(return-from bag-to-list none)))
|
|
||||||
(argument-list-a1 *bag-union* (argsa bag) subst)))
|
|
||||||
(t
|
|
||||||
none))))
|
|
||||||
|
|
||||||
(defun list-to-bag (list &optional subst)
|
|
||||||
(dereference
|
|
||||||
list subst
|
|
||||||
:if-variable none
|
|
||||||
:if-compound-appl none
|
|
||||||
:if-constant (if (null list) (make-compound *bag-union*) none)
|
|
||||||
:if-compound-cons (let ((sbags nil))
|
|
||||||
(loop
|
|
||||||
(push (make-compound *singleton-bag* (pop list)) sbags)
|
|
||||||
(dereference
|
|
||||||
list subst
|
|
||||||
:if-variable (return none)
|
|
||||||
:if-compound-appl (return none)
|
|
||||||
:if-constant (return (if (null list) (make-compound* *bag-union* (reverse sbags)) none)))))))
|
|
||||||
|
|
||||||
;;; code-for-bags4.lisp EOF
|
|
Binary file not shown.
|
@ -1,34 +0,0 @@
|
||||||
;;; -*- Mode: Lisp; Syntax: Common-Lisp; Package: snark -*-
|
|
||||||
;;; File: code-for-lists2.lisp
|
|
||||||
;;; The contents of this file are subject to the Mozilla Public License
|
|
||||||
;;; Version 1.1 (the "License"); you may not use this file except in
|
|
||||||
;;; compliance with the License. You may obtain a copy of the License at
|
|
||||||
;;; http://www.mozilla.org/MPL/
|
|
||||||
;;;
|
|
||||||
;;; Software distributed under the License is distributed on an "AS IS"
|
|
||||||
;;; basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the
|
|
||||||
;;; License for the specific language governing rights and limitations
|
|
||||||
;;; under the License.
|
|
||||||
;;;
|
|
||||||
;;; The Original Code is SNARK.
|
|
||||||
;;; The Initial Developer of the Original Code is SRI International.
|
|
||||||
;;; Portions created by the Initial Developer are Copyright (C) 1981-2011.
|
|
||||||
;;; All Rights Reserved.
|
|
||||||
;;;
|
|
||||||
;;; Contributor(s): Mark E. Stickel <stickel@ai.sri.com>.
|
|
||||||
|
|
||||||
(in-package :snark)
|
|
||||||
|
|
||||||
(defun declare-code-for-lists ()
|
|
||||||
(declare-constant nil :locked t :constructor t :sort 'list)
|
|
||||||
(setf *cons* (declare-function1 '$$cons 2 :constructor t :to-lisp-code 'cons-term-to-lisp :sort 'list :ordering-status :left-to-right))
|
|
||||||
|
|
||||||
(declare-ordering-greaterp '$$cons nil)
|
|
||||||
|
|
||||||
(declare-function1 '$$list :any :macro t :input-code 'input-lisp-list)
|
|
||||||
(declare-function1 '$$list* :any :macro t :input-code 'input-lisp-list*)
|
|
||||||
|
|
||||||
(declare-characteristic-relation '$$listp #'listp 'list)
|
|
||||||
nil)
|
|
||||||
|
|
||||||
;;; code-for-lists2.lisp EOF
|
|
Binary file not shown.
|
@ -1,505 +0,0 @@
|
||||||
;;; -*- Mode: Lisp; Syntax: Common-Lisp; Package: snark -*-
|
|
||||||
;;; File: code-for-numbers3.lisp
|
|
||||||
;;; The contents of this file are subject to the Mozilla Public License
|
|
||||||
;;; Version 1.1 (the "License"); you may not use this file except in
|
|
||||||
;;; compliance with the License. You may obtain a copy of the License at
|
|
||||||
;;; http://www.mozilla.org/MPL/
|
|
||||||
;;;
|
|
||||||
;;; Software distributed under the License is distributed on an "AS IS"
|
|
||||||
;;; basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the
|
|
||||||
;;; License for the specific language governing rights and limitations
|
|
||||||
;;; under the License.
|
|
||||||
;;;
|
|
||||||
;;; The Original Code is SNARK.
|
|
||||||
;;; The Initial Developer of the Original Code is SRI International.
|
|
||||||
;;; Portions created by the Initial Developer are Copyright (C) 1981-2012.
|
|
||||||
;;; All Rights Reserved.
|
|
||||||
;;;
|
|
||||||
;;; Contributor(s): Mark E. Stickel <stickel@ai.sri.com>.
|
|
||||||
|
|
||||||
(in-package :snark)
|
|
||||||
|
|
||||||
;;; SNARK can evaluate arithmetic expressions as if by table lookup
|
|
||||||
;;; for procedurally attached relations and functions
|
|
||||||
;;;
|
|
||||||
;;; most of what SNARK "knows" about numbers is limited by this notion of table lookup;
|
|
||||||
;;; few if any more general properties are known
|
|
||||||
;;; like (= (+ x 0) x), (= (* x 0) 0), (exists (x) (< x 0)),
|
|
||||||
;;; associativity and commutativity of + and *, etc.
|
|
||||||
;;;
|
|
||||||
;;; this is intended to provide simple arithmetic calculation and not much if any symbolic algebra
|
|
||||||
;;;
|
|
||||||
;;; SNARK numbers are represented by Lisp rational numbers (integers or ratios)
|
|
||||||
;;; and complex numbers with rational real and imaginary parts
|
|
||||||
;;;
|
|
||||||
;;; floating-point numbers are replaced by rationals when input
|
|
||||||
;;;
|
|
||||||
;;; SNARK number type hierarchy: number = complex > real > rational > integer
|
|
||||||
;;;
|
|
||||||
;;; arithmetic relations are encoded in terms of $less
|
|
||||||
;;; using lexicographic ordering of complex numbers
|
|
||||||
;;; that also enables additive cancellation law
|
|
||||||
;;; and multiplicative cancellation law for multiplication by nonzero reals
|
|
||||||
|
|
||||||
(defvar *sum*)
|
|
||||||
(defvar *product*)
|
|
||||||
(defvar *less*)
|
|
||||||
(defvar *reciprocal*)
|
|
||||||
|
|
||||||
(defun rnumberp (x)
|
|
||||||
;; test for SNARK number, no floats
|
|
||||||
(or (rationalp x) (and (complexp x) (rationalp (realpart x)) (rationalp (imagpart x)))))
|
|
||||||
|
|
||||||
(defun nonzero-rnumberp (x)
|
|
||||||
(and (rnumberp x) (neql 0 x)))
|
|
||||||
|
|
||||||
(defun nonzero-rationalp (x)
|
|
||||||
(and (rationalp x) (neql 0 x)))
|
|
||||||
|
|
||||||
(defun less? (x y)
|
|
||||||
;; extend < to total lexicographic ordering of complex numbers so that
|
|
||||||
;; a < b or a = b or a > b
|
|
||||||
;; a < b iff a+c < b+c
|
|
||||||
;; a < b iff a*c < b*c (real c>0)
|
|
||||||
;; a < b iff a*c > b*c (real c<0)
|
|
||||||
(or (< (realpart x) (realpart y))
|
|
||||||
(and (= (realpart x) (realpart y))
|
|
||||||
(< (imagpart x) (imagpart y)))))
|
|
||||||
|
|
||||||
(defun lesseq? (x y)
|
|
||||||
(or (= x y) (less? x y)))
|
|
||||||
|
|
||||||
(defun greater? (x y)
|
|
||||||
(less? y x))
|
|
||||||
|
|
||||||
(defun greatereq? (x y)
|
|
||||||
(lesseq? y x))
|
|
||||||
|
|
||||||
(defun euclidean-quotient (number &optional (divisor 1))
|
|
||||||
(mvlet (((values quotient remainder) (truncate number divisor)))
|
|
||||||
(if (minusp remainder)
|
|
||||||
(if (plusp divisor)
|
|
||||||
(values (- quotient 1) (+ remainder divisor))
|
|
||||||
(values (+ quotient 1) (- remainder divisor)))
|
|
||||||
(values quotient remainder))))
|
|
||||||
|
|
||||||
(defun euclidean-remainder (number &optional (divisor 1))
|
|
||||||
;; 0 <= remainder < abs(divisor)
|
|
||||||
(nth-value 1 (euclidean-quotient number divisor)))
|
|
||||||
|
|
||||||
(defun ceiling-remainder (number &optional (divisor 1))
|
|
||||||
(nth-value 1 (ceiling number divisor)))
|
|
||||||
|
|
||||||
(defun round-remainder (number &optional (divisor 1))
|
|
||||||
(nth-value 1 (round number divisor)))
|
|
||||||
|
|
||||||
(defun declare-arithmetic-characteristic-relation (name pred sort &rest options)
|
|
||||||
(apply 'declare-characteristic-relation name pred sort :constraint-theory 'arithmetic options))
|
|
||||||
|
|
||||||
(defun declare-arithmetic-relation (name arity &rest options)
|
|
||||||
(apply 'declare-relation2 name arity
|
|
||||||
:constraint-theory 'arithmetic
|
|
||||||
`(,@options :sort ((t number)))))
|
|
||||||
|
|
||||||
(defun declare-arithmetic-function (name arity &rest options &key (sort 'number) &allow-other-keys)
|
|
||||||
(apply 'declare-function2 name arity
|
|
||||||
:constraint-theory 'arithmetic
|
|
||||||
(if (consp sort) options `(:sort (,sort (t number)) ,@options))))
|
|
||||||
|
|
||||||
(defun declare-code-for-numbers ()
|
|
||||||
(declare-constant 0)
|
|
||||||
(declare-constant 1)
|
|
||||||
(declare-constant -1)
|
|
||||||
|
|
||||||
(declare-arithmetic-characteristic-relation '$$numberp #'rnumberp 'number)
|
|
||||||
(declare-arithmetic-characteristic-relation '$$complexp #'rnumberp 'complex) ;all Lisp numbers are SNARK complex numbers
|
|
||||||
(declare-arithmetic-characteristic-relation '$$realp #'rationalp 'real) ;no floats though
|
|
||||||
(declare-arithmetic-characteristic-relation '$$rationalp #'rationalp 'rational)
|
|
||||||
(declare-arithmetic-characteristic-relation '$$integerp #'integerp 'integer)
|
|
||||||
(declare-arithmetic-characteristic-relation '$$naturalp #'naturalp 'natural)
|
|
||||||
|
|
||||||
(declare-arithmetic-inequality-relations)
|
|
||||||
|
|
||||||
(setf *sum* (declare-arithmetic-function '$$sum 2
|
|
||||||
:associative t
|
|
||||||
:commutative t
|
|
||||||
:sort 'number :sort-code 'arithmetic-term-sort-computer1
|
|
||||||
:rewrite-code (list #'(lambda (x s) (arithmetic-term-rewriter3 x s #'+ 0 none))
|
|
||||||
'sum-term-rewriter1)
|
|
||||||
:arithmetic-relation-rewrite-code 'sum-rel-number-atom-rewriter))
|
|
||||||
|
|
||||||
(setf *product* (declare-arithmetic-function '$$product 2
|
|
||||||
:associative t
|
|
||||||
:commutative t
|
|
||||||
:sort 'number :sort-code 'arithmetic-term-sort-computer1
|
|
||||||
:rewrite-code (list #'(lambda (x s) (arithmetic-term-rewriter3 x s #'* 1 0))
|
|
||||||
#'(lambda (x s) (distributivity-rewriter x s *sum*)))
|
|
||||||
:arithmetic-relation-rewrite-code 'product-rel-number-atom-rewriter))
|
|
||||||
|
|
||||||
(declare-arithmetic-function '$$uminus 1 :sort 'number :sort-code 'arithmetic-term-sort-computer1 :rewrite-code 'uminus-term-rewriter)
|
|
||||||
(declare-arithmetic-function '$$difference 2 :sort 'number :sort-code 'arithmetic-term-sort-computer1 :rewrite-code #'(lambda (x s) (arithmetic-term-rewriter5 x s *sum* '$$uminus)))
|
|
||||||
|
|
||||||
(declare-arithmetic-function '$$floor 1 :sort 'integer :rewrite-code #'(lambda (x s) (arithmetic-term-rewriter4 x s #'floor)))
|
|
||||||
(declare-arithmetic-function '$$ceiling 1 :sort 'integer :rewrite-code #'(lambda (x s) (arithmetic-term-rewriter4 x s #'ceiling)))
|
|
||||||
(declare-arithmetic-function '$$truncate 1 :sort 'integer :rewrite-code #'(lambda (x s) (arithmetic-term-rewriter4 x s #'truncate)))
|
|
||||||
(declare-arithmetic-function '$$round 1 :sort 'integer :rewrite-code #'(lambda (x s) (arithmetic-term-rewriter4 x s #'round)))
|
|
||||||
|
|
||||||
;; partial, guard against division by zero
|
|
||||||
(declare-arithmetic-function '$$quotient_f 2 :sort 'integer :rewrite-code #'(lambda (x s) (arithmetic-term-rewriter2 x s #'rationalp #'floor)))
|
|
||||||
(declare-arithmetic-function '$$quotient_c 2 :sort 'integer :rewrite-code #'(lambda (x s) (arithmetic-term-rewriter2 x s #'rationalp #'ceiling)))
|
|
||||||
(declare-arithmetic-function '$$quotient_t 2 :sort 'integer :rewrite-code #'(lambda (x s) (arithmetic-term-rewriter2 x s #'rationalp #'truncate)))
|
|
||||||
(declare-arithmetic-function '$$quotient_r 2 :sort 'integer :rewrite-code #'(lambda (x s) (arithmetic-term-rewriter2 x s #'rationalp #'round)))
|
|
||||||
(declare-arithmetic-function '$$quotient_e 2 :sort 'integer :rewrite-code #'(lambda (x s) (arithmetic-term-rewriter2 x s #'rationalp #'euclidean-quotient)))
|
|
||||||
(declare-arithmetic-function '$$remainder_f 2 :sort 'real :sort-code 'arithmetic-term-sort-computer3 :rewrite-code #'(lambda (x s) (arithmetic-term-rewriter2 x s #'rationalp #'mod)))
|
|
||||||
(declare-arithmetic-function '$$remainder_c 2 :sort 'real :sort-code 'arithmetic-term-sort-computer3 :rewrite-code #'(lambda (x s) (arithmetic-term-rewriter2 x s #'rationalp #'ceiling-remainder)))
|
|
||||||
(declare-arithmetic-function '$$remainder_t 2 :sort 'real :sort-code 'arithmetic-term-sort-computer3 :rewrite-code #'(lambda (x s) (arithmetic-term-rewriter2 x s #'rationalp #'rem)))
|
|
||||||
(declare-arithmetic-function '$$remainder_r 2 :sort 'real :sort-code 'arithmetic-term-sort-computer3 :rewrite-code #'(lambda (x s) (arithmetic-term-rewriter2 x s #'rationalp #'round-remainder)))
|
|
||||||
(declare-arithmetic-function '$$remainder_e 2 :sort 'real :sort-code 'arithmetic-term-sort-computer3 :rewrite-code #'(lambda (x s) (arithmetic-term-rewriter2 x s #'rationalp #'euclidean-remainder)))
|
|
||||||
|
|
||||||
;; partial, guard against division by zero
|
|
||||||
(setf *reciprocal* (declare-arithmetic-function '$$reciprocal 1
|
|
||||||
:sort 'number :sort-code 'arithmetic-term-sort-computer2
|
|
||||||
:rewrite-code #'(lambda (x s) (arithmetic-term-rewriter2 x s #'rnumberp #'/))
|
|
||||||
:arithmetic-relation-rewrite-code 'reciprocal-rel-number-atom-rewriter))
|
|
||||||
(declare-arithmetic-function '$$quotient 2 :sort 'number :sort-code 'arithmetic-term-sort-computer2 :rewrite-code #'(lambda (x s) (arithmetic-term-rewriter5 x s *product* '$$reciprocal)))
|
|
||||||
|
|
||||||
;; abs of complex numbers might be irrational
|
|
||||||
(declare-arithmetic-function '$$abs 1 :sort 'real :sort-code 'arithmetic-term-sort-computer3 :rewrite-code #'(lambda (x s) (arithmetic-term-rewriter1 x s #'rationalp #'abs)))
|
|
||||||
|
|
||||||
(declare-arithmetic-function '$$realpart 1 :sort 'real :sort-code 'arithmetic-term-sort-computer3 :rewrite-code #'(lambda (x s) (arithmetic-term-rewriter1 x s #'rnumberp #'realpart)))
|
|
||||||
(declare-arithmetic-function '$$imagpart 1 :sort 'real :sort-code 'arithmetic-term-sort-computer3 :rewrite-code #'(lambda (x s) (arithmetic-term-rewriter1 x s #'rnumberp #'imagpart)))
|
|
||||||
nil)
|
|
||||||
|
|
||||||
(defun declare-arithmetic-inequality-relations ()
|
|
||||||
(setf *less* (declare-arithmetic-relation '$$$less 2
|
|
||||||
:rewrite-code (list 'irreflexivity-rewriter
|
|
||||||
#'(lambda (x s) (arithmetic-atom-rewriter1 x s #'rnumberp #'less?))
|
|
||||||
'arithmetic-relation-rewriter
|
|
||||||
'term-rel-term-to-0-rel-difference-atom-rewriter)
|
|
||||||
:falsify-code 'irreflexivity-falsifier))
|
|
||||||
(declare-arithmetic-relation '$$$greater 2 :rewrite-code #'(lambda (x s) (arithmetic-atom-rewriter4 x s '$$$less t nil)))
|
|
||||||
(declare-arithmetic-relation '$$$lesseq 2 :rewrite-code #'(lambda (x s) (arithmetic-atom-rewriter4 x s '$$$less t t)))
|
|
||||||
(declare-arithmetic-relation '$$$greatereq 2 :rewrite-code #'(lambda (x s) (arithmetic-atom-rewriter4 x s '$$$less nil t)))
|
|
||||||
(let ((inputter
|
|
||||||
(let ((done nil))
|
|
||||||
(function
|
|
||||||
(lambda (head args polarity)
|
|
||||||
(declare (ignorable head args polarity))
|
|
||||||
(unless done
|
|
||||||
(setf done t)
|
|
||||||
(assert '(forall (x) (not ($$less x x))) :name :$$less-is-irreflexive)
|
|
||||||
(assert '(forall (x) (not ($$greater x x))) :name :$$greater-is-irreflexive)
|
|
||||||
(assert '(forall (x) ($$lesseq x x)) :name :$$lesseq-is-reflexive)
|
|
||||||
(assert '(forall (x) ($$greatereq x x)) :name :$$greatereq-is-reflexive)
|
|
||||||
(assert '(forall ((x number) (y number)) (implied-by ($$less x y) ($$$less x y))) :name :solve-$$less-by-$$$less)
|
|
||||||
(assert '(forall ((x number) (y number)) (implied-by ($$greater x y) ($$$less y x))) :name :solve-$$greater-by-$$$less)
|
|
||||||
(assert '(forall ((x number) (y number)) (implied-by ($$lesseq x y) (not ($$$less y x)))) :name :solve-$$lesseq-by-$$$less)
|
|
||||||
(assert '(forall ((x number) (y number)) (implied-by ($$greatereq x y) (not ($$$less x y)))) :name :solve-$$greatereq-by-$$$less)
|
|
||||||
(assert '(forall ((x number) (y number)) (implied-by (not ($$less x y)) (not ($$$less x y)))) :name :solve-~$$less-by-$$$less)
|
|
||||||
(assert '(forall ((x number) (y number)) (implied-by (not ($$greater x y)) (not ($$$less y x)))) :name :solve-~$$greater-by-$$$less)
|
|
||||||
(assert '(forall ((x number) (y number)) (implied-by (not ($$lesseq x y)) ($$$less y x))) :name :solve-~$$lesseq-by-$$$less)
|
|
||||||
(assert '(forall ((x number) (y number)) (implied-by (not ($$greatereq x y)) ($$$less x y))) :name :solve-~$$greatereq-by-$$$less))
|
|
||||||
none)))))
|
|
||||||
(declare-relation '$$less 2 :input-code inputter :rewrite-code #'(lambda (x s) (arithmetic-atom-rewriter1 x s #'rnumberp #'less?)))
|
|
||||||
(declare-relation '$$greater 2 :input-code inputter :rewrite-code #'(lambda (x s) (arithmetic-atom-rewriter1 x s #'rnumberp #'greater?)))
|
|
||||||
(declare-relation '$$lesseq 2 :input-code inputter :rewrite-code #'(lambda (x s) (arithmetic-atom-rewriter1 x s #'rnumberp #'lesseq?)))
|
|
||||||
(declare-relation '$$greatereq 2 :input-code inputter :rewrite-code #'(lambda (x s) (arithmetic-atom-rewriter1 x s #'rnumberp #'greatereq?))))
|
|
||||||
nil)
|
|
||||||
|
|
||||||
(defun arithmetic-term-sort-computer0 (term subst sort-names default-sort-name)
|
|
||||||
;; when sort-names is '(integer rational real) and default-sort-name is number
|
|
||||||
;; if all arguments are integers then integer
|
|
||||||
;; elif all arguments are rationals then rational
|
|
||||||
;; elif all arguments are reals then real
|
|
||||||
;; else number
|
|
||||||
(let ((top-arg-sort (the-sort (pop sort-names))))
|
|
||||||
(dolist (arg (args term) top-arg-sort)
|
|
||||||
(let ((arg-sort (term-sort arg subst)))
|
|
||||||
(when (or (top-sort? arg-sort)
|
|
||||||
(loop
|
|
||||||
(cond
|
|
||||||
((subsort? arg-sort top-arg-sort)
|
|
||||||
(return nil))
|
|
||||||
((null sort-names)
|
|
||||||
(return t))
|
|
||||||
(t
|
|
||||||
(setf top-arg-sort (the-sort (pop sort-names)))))))
|
|
||||||
(return (the-sort default-sort-name)))))))
|
|
||||||
|
|
||||||
(defun arithmetic-term-sort-computer1 (term subst)
|
|
||||||
(arithmetic-term-sort-computer0 term subst '(integer rational real) 'number))
|
|
||||||
|
|
||||||
(defun arithmetic-term-sort-computer2 (term subst)
|
|
||||||
(arithmetic-term-sort-computer0 term subst '(rational real) 'number))
|
|
||||||
|
|
||||||
(defun arithmetic-term-sort-computer3 (term subst)
|
|
||||||
(arithmetic-term-sort-computer0 term subst '(integer rational) 'real))
|
|
||||||
|
|
||||||
(defun arithmetic-expr-args (x subst pred)
|
|
||||||
;; return dereferenced arguments of x if all satisfy pred; otherwise, return none
|
|
||||||
(prog->
|
|
||||||
(split-if (args x) subst ->* arg)
|
|
||||||
(or (funcall pred arg) (return-from arithmetic-expr-args none))))
|
|
||||||
|
|
||||||
(defun arithmetic-atom-rewriter1 (atom subst pred operator)
|
|
||||||
(let ((args (arithmetic-expr-args atom subst pred)))
|
|
||||||
(if (eq none args) none (if (apply operator args) true false))))
|
|
||||||
|
|
||||||
(defun arithmetic-atom-rewriter4 (atom subst newhead reverse negate)
|
|
||||||
;; a<=b -> ~(b<a)
|
|
||||||
;; a>b -> b<a
|
|
||||||
;; a>=b -> ~(a<b)
|
|
||||||
(declare (ignorable subst))
|
|
||||||
(let* ((args (args atom))
|
|
||||||
(atom* (make-compound* (input-relation-symbol newhead (length args)) (if reverse (reverse args) args))))
|
|
||||||
(if negate (negate atom*) atom*)))
|
|
||||||
|
|
||||||
(defun arithmetic-term-rewriter1 (term subst pred operator)
|
|
||||||
(let ((args (arithmetic-expr-args term subst pred)))
|
|
||||||
(if (eq none args) none (declare-constant (apply operator args)))))
|
|
||||||
|
|
||||||
(defun arithmetic-term-rewriter2 (term subst pred operator)
|
|
||||||
;; like arithmetic-term-rewriter1 but last argument must be nonzero
|
|
||||||
(let ((args (arithmetic-expr-args term subst pred)))
|
|
||||||
(if (or (eq none args) (eql 0 (first (last args)))) none (declare-constant (apply operator args)))))
|
|
||||||
|
|
||||||
(defun arithmetic-term-rewriter3 (term subst operator identity absorber)
|
|
||||||
;; combines numerical arguments in sum and product terms
|
|
||||||
(let* ((head (head term))
|
|
||||||
(args (args term))
|
|
||||||
(args* (argument-list-a1 head args subst identity)))
|
|
||||||
(cond
|
|
||||||
((null args*)
|
|
||||||
identity)
|
|
||||||
((null (rest args*))
|
|
||||||
(first args*))
|
|
||||||
(t
|
|
||||||
(mvlet (((values nums nonnums) (split-if #'rnumberp args* subst)))
|
|
||||||
(cond
|
|
||||||
((null nums)
|
|
||||||
(if (eq args args*) none (make-compound* head args*)))
|
|
||||||
(t
|
|
||||||
(let ((num (if (null (rest nums)) (first nums) (declare-constant (apply operator nums)))))
|
|
||||||
(cond
|
|
||||||
((eql absorber num)
|
|
||||||
num)
|
|
||||||
((eql identity num)
|
|
||||||
(make-a1-compound* head identity nonnums))
|
|
||||||
((and (eq args args*) (null (rest nums)) (let ((arg1 (first args))) (dereference arg1 subst :if-constant (eql num arg1))))
|
|
||||||
none)
|
|
||||||
(t
|
|
||||||
(make-a1-compound* head identity num nonnums)))))))))))
|
|
||||||
|
|
||||||
(defun arithmetic-term-rewriter4 (term subst operator)
|
|
||||||
;; for floor, ceiling, truncate, and round
|
|
||||||
(let ((arg (first (args term))))
|
|
||||||
(cond
|
|
||||||
((dereference arg subst :if-constant (realp arg))
|
|
||||||
(declare-constant (funcall operator arg)))
|
|
||||||
((subsort? (term-sort arg subst) (the-sort 'integer))
|
|
||||||
arg)
|
|
||||||
(t
|
|
||||||
none))))
|
|
||||||
|
|
||||||
(defun arithmetic-term-rewriter5 (term subst op2 op1)
|
|
||||||
;; ($$difference a b) -> ($$sum a ($$uminus b))
|
|
||||||
;; ($$quotient a b) -> ($$product a ($$reciprocal b))
|
|
||||||
(declare (ignorable subst))
|
|
||||||
(mvlet (((list a b) (args term)))
|
|
||||||
(make-compound (input-function-symbol op2 2) a (make-compound (input-function-symbol op1 1) b))))
|
|
||||||
|
|
||||||
(defun decompose-product-term (term subst)
|
|
||||||
(if (dereference term subst :if-compound-appl t)
|
|
||||||
(let ((head (heada term)))
|
|
||||||
(if (eq *product* head)
|
|
||||||
(mvlet* ((args (args term))
|
|
||||||
((values nums nonnums) (split-if #'rnumberp (argument-list-a1 head args subst) subst)))
|
|
||||||
(if (and nonnums nums (null (rest nums)) (not (eql 0 (first nums))))
|
|
||||||
(values (make-a1-compound* head 1 nonnums) (first nums))
|
|
||||||
(values term 1)))
|
|
||||||
(values term 1)))
|
|
||||||
(values term 1)))
|
|
||||||
|
|
||||||
(defun sum-term-rewriter1 (term subst)
|
|
||||||
;; collect equal arguments into products
|
|
||||||
;; ($$sum a a b a) -> ($$sum ($$product 3 a) b)
|
|
||||||
;; ($$sum ($$product 2 a b) ($$product b 3 a)) -> ($$product 5 a b))
|
|
||||||
(let ((rewritten nil))
|
|
||||||
(labels
|
|
||||||
((combine-terms (terms)
|
|
||||||
(cond
|
|
||||||
((null (rest terms))
|
|
||||||
terms)
|
|
||||||
(t
|
|
||||||
(mvlet (((values term1 mult1) (decompose-product-term (first terms) subst)))
|
|
||||||
;; combine terms in (rest terms) then find a match for term1 if there is one
|
|
||||||
(mvlet* ((mult2 nil)
|
|
||||||
((values matches nonmatches) (prog->
|
|
||||||
(split-if (combine-terms (rest terms)) subst ->* term2)
|
|
||||||
(unless mult2
|
|
||||||
(unless (rnumberp term2) ;don't combine numbers
|
|
||||||
(mvlet (((values term2 mult) (decompose-product-term term2 subst)))
|
|
||||||
(when (equal-p term1 term2 subst)
|
|
||||||
(setf mult2 mult))))))))
|
|
||||||
(declare (ignorable matches))
|
|
||||||
(cond
|
|
||||||
(mult2
|
|
||||||
(setf rewritten t)
|
|
||||||
(let ((mult (declare-constant (+ mult1 mult2))))
|
|
||||||
(cond
|
|
||||||
((eql 0 mult)
|
|
||||||
nonmatches)
|
|
||||||
((eql 1 mult)
|
|
||||||
(cons term1 nonmatches))
|
|
||||||
((dereference term1 subst :if-compound-appl (eq *product* (heada term1)))
|
|
||||||
(cons (make-compound* *product* mult (args term1)) nonmatches))
|
|
||||||
(t
|
|
||||||
(cons (make-compound *product* mult term1) nonmatches)))))
|
|
||||||
((eq (rest terms) nonmatches)
|
|
||||||
terms)
|
|
||||||
(t
|
|
||||||
(cons (first terms) nonmatches)))))))))
|
|
||||||
(let* ((head (head term))
|
|
||||||
(args (argument-list-a1 head (args term) subst))
|
|
||||||
(args* (combine-terms args)))
|
|
||||||
(if rewritten (make-a1-compound* head 0 args*) none)))))
|
|
||||||
|
|
||||||
(defun uminus-term-rewriter (term subst)
|
|
||||||
;; ($$uminus a) -> ($$product -1 a)
|
|
||||||
(declare (ignorable subst))
|
|
||||||
(make-compound *product* -1 (first (args term))))
|
|
||||||
|
|
||||||
(defun arithmetic-relation-rewriter (atom subst)
|
|
||||||
(mvlet (((list a b) (args atom)))
|
|
||||||
(or (dereference2
|
|
||||||
a b subst
|
|
||||||
:if-constant*compound (and (rnumberp a)
|
|
||||||
(let ((fn (head b)))
|
|
||||||
(dolist (fun (function-arithmetic-relation-rewrite-code fn) nil)
|
|
||||||
(let ((v (funcall fun atom subst)))
|
|
||||||
(unless (eq none v)
|
|
||||||
(pushnew (function-code-name fn) *rewrites-used*)
|
|
||||||
(return v))))))
|
|
||||||
:if-compound*constant (and (rnumberp b)
|
|
||||||
(let ((fn (head a)))
|
|
||||||
(dolist (fun (function-arithmetic-relation-rewrite-code fn) nil)
|
|
||||||
(let ((v (funcall fun atom subst)))
|
|
||||||
(unless (eq none v)
|
|
||||||
(pushnew (function-code-name fn) *rewrites-used*)
|
|
||||||
(return v)))))))
|
|
||||||
none)))
|
|
||||||
|
|
||||||
(defun term-rel-term-to-0-rel-difference-atom-rewriter (atom subst)
|
|
||||||
(mvlet ((rel (head atom))
|
|
||||||
((list a b) (args atom)))
|
|
||||||
(cl:assert (eq *less* rel))
|
|
||||||
(cond
|
|
||||||
((dereference2
|
|
||||||
a b subst
|
|
||||||
:if-variable*compound (variable-occurs-p a b subst)
|
|
||||||
:if-compound*variable (variable-occurs-p b a subst)
|
|
||||||
:if-constant*compound (and (not (rnumberp a)) (constant-occurs-p a b subst))
|
|
||||||
:if-compound*constant (and (not (rnumberp b)) (constant-occurs-p b a subst))
|
|
||||||
:if-compound*compound t)
|
|
||||||
(pushnew (function-code-name *product*) *rewrites-used*)
|
|
||||||
(pushnew (function-code-name *sum*) *rewrites-used*)
|
|
||||||
(make-compound rel 0 (make-compound *sum* b (make-compound *product* -1 a))))
|
|
||||||
(t
|
|
||||||
none))))
|
|
||||||
|
|
||||||
(defun sum-rel-number-atom-rewriter (atom subst)
|
|
||||||
;; (eq (sum 2 c) 6) -> (eq c 4) and (less 6 (sum 2 c)) -> (less 4 c) etc.
|
|
||||||
(mvlet ((rel (head atom))
|
|
||||||
((list a b) (args atom)))
|
|
||||||
(cl:assert (or (eq *less* rel) (eq *=* rel)))
|
|
||||||
(or (dereference
|
|
||||||
a subst
|
|
||||||
:if-constant (and (rnumberp a)
|
|
||||||
(dereference
|
|
||||||
b subst
|
|
||||||
:if-compound (and (eq *sum* (head b))
|
|
||||||
(let* ((args (args b)) (arg1 (first args)))
|
|
||||||
(and (rnumberp arg1)
|
|
||||||
(make-compound (head atom) (declare-constant (- a arg1)) (make-a1-compound* *sum* 0 (rest args))))))))
|
|
||||||
:if-compound (and (eq *sum* (head a))
|
|
||||||
(dereference
|
|
||||||
b subst
|
|
||||||
:if-constant (and (rnumberp b)
|
|
||||||
(let* ((args (args a)) (arg1 (first args)))
|
|
||||||
(and (rnumberp arg1)
|
|
||||||
(make-compound (head atom) (make-a1-compound* *sum* 0 (rest args)) (declare-constant (- b arg1)))))))))
|
|
||||||
none)))
|
|
||||||
|
|
||||||
(defun product-rel-number-atom-rewriter (atom subst)
|
|
||||||
;; like sum-rel-number-atom-rewriter, but don't divide by zero, and reverse arguments when dividing by negative number
|
|
||||||
(mvlet ((rel (head atom))
|
|
||||||
((list a b) (args atom)))
|
|
||||||
(cl:assert (or (eq *less* rel) (eq *=* rel)))
|
|
||||||
(or (dereference
|
|
||||||
a subst
|
|
||||||
:if-constant (and (rnumberp a)
|
|
||||||
(dereference
|
|
||||||
b subst
|
|
||||||
:if-compound (and (eq *product* (head b))
|
|
||||||
(let* ((args (args b)) (arg1 (first args)))
|
|
||||||
(and (if (eq *less* rel) (nonzero-rationalp arg1) (nonzero-rnumberp arg1))
|
|
||||||
(if (and (eq *less* rel) (minusp arg1))
|
|
||||||
(make-compound (head atom) (make-a1-compound* *product* 0 (rest args)) (declare-constant (/ a arg1)))
|
|
||||||
(make-compound (head atom) (declare-constant (/ a arg1)) (make-a1-compound* *product* 0 (rest args)))))))))
|
|
||||||
:if-compound (and (eq *product* (head a))
|
|
||||||
(dereference
|
|
||||||
b subst
|
|
||||||
:if-constant (and (rnumberp b)
|
|
||||||
(let* ((args (args a)) (arg1 (first args)))
|
|
||||||
(and (if (eq *less* rel) (nonzero-rationalp arg1) (nonzero-rnumberp arg1))
|
|
||||||
(if (and (eq *less* rel) (minusp arg1))
|
|
||||||
(make-compound (head atom) (declare-constant (/ b arg1)) (make-a1-compound* *product* 0 (rest args)))
|
|
||||||
(make-compound (head atom) (make-a1-compound* *product* 0 (rest args)) (declare-constant (/ b arg1))))))))))
|
|
||||||
none)))
|
|
||||||
|
|
||||||
(defun reciprocal-rel-number-atom-rewriter (atom subst)
|
|
||||||
(mvlet ((rel (head atom))
|
|
||||||
((list a b) (args atom)))
|
|
||||||
(cl:assert (or (eq *less* rel) (eq *=* rel)))
|
|
||||||
(cond
|
|
||||||
((eq *less* rel)
|
|
||||||
none)
|
|
||||||
(t
|
|
||||||
(or (dereference
|
|
||||||
a subst
|
|
||||||
:if-constant (and (nonzero-rnumberp a)
|
|
||||||
(dereference
|
|
||||||
b subst
|
|
||||||
:if-compound (and (eq *reciprocal* (head b))
|
|
||||||
(make-compound (head atom) (declare-constant (/ a)) (arg1 b)))))
|
|
||||||
:if-compound (and (eq *reciprocal* (head a))
|
|
||||||
(dereference
|
|
||||||
b subst
|
|
||||||
:if-constant (and (nonzero-rnumberp b)
|
|
||||||
(make-compound (head atom) (arg1 a) (declare-constant (/ b)))))))
|
|
||||||
none)))))
|
|
||||||
|
|
||||||
(defmethod checkpoint-theory ((theory (eql 'arithmetic)))
|
|
||||||
nil)
|
|
||||||
|
|
||||||
(defmethod uncheckpoint-theory ((theory (eql 'arithmetic)))
|
|
||||||
nil)
|
|
||||||
|
|
||||||
(defmethod restore-theory ((theory (eql 'arithmetic)))
|
|
||||||
nil)
|
|
||||||
|
|
||||||
(defmethod theory-closure ((theory (eql 'arithmetic)))
|
|
||||||
nil)
|
|
||||||
|
|
||||||
(defmethod theory-assert (atom (theory (eql 'arithmetic)))
|
|
||||||
(declare (ignorable atom))
|
|
||||||
nil)
|
|
||||||
|
|
||||||
(defmethod theory-deny (atom (theory (eql 'arithmetic)))
|
|
||||||
(declare (ignorable atom))
|
|
||||||
nil)
|
|
||||||
|
|
||||||
(defmethod theory-simplify (wff (theory (eql 'arithmetic)))
|
|
||||||
wff)
|
|
||||||
|
|
||||||
;;; code-for-numbers3.lisp EOF
|
|
Binary file not shown.
|
@ -1,62 +0,0 @@
|
||||||
;;; -*- Mode: Lisp; Syntax: Common-Lisp; Package: snark -*-
|
|
||||||
;;; File: code-for-strings2.lisp
|
|
||||||
;;; The contents of this file are subject to the Mozilla Public License
|
|
||||||
;;; Version 1.1 (the "License"); you may not use this file except in
|
|
||||||
;;; compliance with the License. You may obtain a copy of the License at
|
|
||||||
;;; http://www.mozilla.org/MPL/
|
|
||||||
;;;
|
|
||||||
;;; Software distributed under the License is distributed on an "AS IS"
|
|
||||||
;;; basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the
|
|
||||||
;;; License for the specific language governing rights and limitations
|
|
||||||
;;; under the License.
|
|
||||||
;;;
|
|
||||||
;;; The Original Code is SNARK.
|
|
||||||
;;; The Initial Developer of the Original Code is SRI International.
|
|
||||||
;;; Portions created by the Initial Developer are Copyright (C) 1981-2011.
|
|
||||||
;;; All Rights Reserved.
|
|
||||||
;;;
|
|
||||||
;;; Contributor(s): Mark E. Stickel <stickel@ai.sri.com>.
|
|
||||||
|
|
||||||
(in-package :snark)
|
|
||||||
|
|
||||||
(defun declare-code-for-strings ()
|
|
||||||
(declare-characteristic-relation '$$stringp #'stringp 'string)
|
|
||||||
|
|
||||||
(declare-function1 '$$list-to-string 1 :rewrite-code 'list-to-string-term-rewriter :sort 'string)
|
|
||||||
(declare-function1 '$$string-to-list 1 :rewrite-code 'string-to-list-term-rewriter :sort 'list) ;nil and $$cons must be of sort list for this to work
|
|
||||||
nil)
|
|
||||||
|
|
||||||
(defun string-list-p (x &optional subst)
|
|
||||||
(dereference
|
|
||||||
x subst
|
|
||||||
:if-constant (null x)
|
|
||||||
:if-compound-cons (and (let ((a (carc x)))
|
|
||||||
(dereference a subst :if-constant (and (stringp a) (= 1 (length a)))))
|
|
||||||
(string-list-p (cdrc x) subst))))
|
|
||||||
|
|
||||||
(defun string-to-list (string)
|
|
||||||
;; (string-to-list "abc") -> (list "a" "b" "c")
|
|
||||||
(map 'list (lambda (char) (declare-constant (string char))) string))
|
|
||||||
|
|
||||||
(defun list-to-string (list &optional subst)
|
|
||||||
;; (list-to-string (list "a" "b" "c")) -> "abc"
|
|
||||||
;; list is already dereferenced
|
|
||||||
(cond
|
|
||||||
((null list)
|
|
||||||
(declare-constant ""))
|
|
||||||
(t
|
|
||||||
(declare-constant (apply #'concatenate 'string (instantiate list subst))))))
|
|
||||||
|
|
||||||
(defun list-to-string-term-rewriter (term subst)
|
|
||||||
(let ((x (first (args term))))
|
|
||||||
(if (dereference x subst :if-constant (null x) :if-compound-cons (string-list-p x subst))
|
|
||||||
(list-to-string x subst)
|
|
||||||
none)))
|
|
||||||
|
|
||||||
(defun string-to-list-term-rewriter (term subst)
|
|
||||||
(let ((x (first (args term))))
|
|
||||||
(if (dereference x subst :if-constant (stringp x))
|
|
||||||
(string-to-list x)
|
|
||||||
none)))
|
|
||||||
|
|
||||||
;;; code-for-strings2.lisp EOF
|
|
Binary file not shown.
|
@ -1,714 +0,0 @@
|
||||||
;;; -*- Mode: Lisp; Syntax: Common-Lisp; Package: snark-user -*-
|
|
||||||
;;; File: coder.lisp
|
|
||||||
;;; The contents of this file are subject to the Mozilla Public License
|
|
||||||
;;; Version 1.1 (the "License"); you may not use this file except in
|
|
||||||
;;; compliance with the License. You may obtain a copy of the License at
|
|
||||||
;;; http://www.mozilla.org/MPL/
|
|
||||||
;;;
|
|
||||||
;;; Software distributed under the License is distributed on an "AS IS"
|
|
||||||
;;; basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the
|
|
||||||
;;; License for the specific language governing rights and limitations
|
|
||||||
;;; under the License.
|
|
||||||
;;;
|
|
||||||
;;; The Original Code is SNARK.
|
|
||||||
;;; The Initial Developer of the Original Code is SRI International.
|
|
||||||
;;; Portions created by the Initial Developer are Copyright (C) 1981-2012.
|
|
||||||
;;; All Rights Reserved.
|
|
||||||
;;;
|
|
||||||
;;; Contributor(s): Mark E. Stickel <stickel@ai.sri.com>.
|
|
||||||
|
|
||||||
(in-package :snark-user)
|
|
||||||
|
|
||||||
;;; coder finds shortest condensed-detachment proofs
|
|
||||||
|
|
||||||
(defstruct (proof-line
|
|
||||||
(:constructor make-proof-line (number
|
|
||||||
just
|
|
||||||
wff
|
|
||||||
&optional
|
|
||||||
(wff-size (snark::size wff))
|
|
||||||
(wff-vars (snark::variables wff))))
|
|
||||||
(:copier nil))
|
|
||||||
(number 0 :read-only t)
|
|
||||||
(just nil :read-only t)
|
|
||||||
(wff nil :read-only t)
|
|
||||||
(wff-size 0 :read-only t)
|
|
||||||
(wff-vars nil :read-only t)
|
|
||||||
(target nil)
|
|
||||||
(hint nil)
|
|
||||||
(cut nil))
|
|
||||||
|
|
||||||
(defvar *coder-start-time*)
|
|
||||||
(defvar *coder-run-time-limit*)
|
|
||||||
(defvar *coder-step-count*)
|
|
||||||
(defvar *coder-derivation-count*)
|
|
||||||
(defvar *coder-print-state-interval* 1000000)
|
|
||||||
(defvar *coder-maximum-term-size-found*)
|
|
||||||
(defvar *coder-maximum-target-size*)
|
|
||||||
(defvar *coder-term-size-limit*)
|
|
||||||
(defvar *coder-term-vars-limit*)
|
|
||||||
(defvar *coder-ordering* :rpo)
|
|
||||||
(defvar *coder-do-reverse-cd*)
|
|
||||||
|
|
||||||
(defvar *test1* nil)
|
|
||||||
(defvar *test2* nil)
|
|
||||||
|
|
||||||
(defun coder (axioms target &rest options
|
|
||||||
&key (max 100) (min 1) (max-syms nil) (max-vars nil) (op nil) (variables nil)
|
|
||||||
kill avoid all-proofs must-use resume hints reverse-cd
|
|
||||||
(steps-to-use nil) (steps-to-use-count (length steps-to-use))
|
|
||||||
((:run-time-limit *coder-run-time-limit*) nil)
|
|
||||||
(*test1* *test1*) (*test2* *test2*))
|
|
||||||
(let ((*print-pretty* nil))
|
|
||||||
(print (cons 'coder (mapcar (lambda (x) (kwote x t)) (list* axioms target options))))
|
|
||||||
(initialize)
|
|
||||||
(cl:assert (>= (length steps-to-use) steps-to-use-count 0))
|
|
||||||
(setf steps-to-use (if (= 0 steps-to-use-count) nil (mapcar #'coder-input-term steps-to-use)))
|
|
||||||
(setf variables (mapcar (lambda (x) (cons x (snark::make-variable))) variables))
|
|
||||||
(setf avoid (mapcar #'(lambda (x) (coder-input-term x variables)) avoid))
|
|
||||||
(use-term-ordering *coder-ordering*)
|
|
||||||
(use-default-ordering 'coder-default-symbol-ordering)
|
|
||||||
(ordering-functions>constants t)
|
|
||||||
(test-option19 t)
|
|
||||||
(prog->
|
|
||||||
(identity 0 -> naxioms)
|
|
||||||
(mapcar (lambda (x) (make-proof-line (incf naxioms) naxioms (coder-input-term x variables))) axioms -> axioms)
|
|
||||||
(unless op
|
|
||||||
(dolist (x axioms)
|
|
||||||
(let ((x (proof-line-wff x)))
|
|
||||||
(when (and (compound-p x) (eql 2 (length (args x))))
|
|
||||||
(cond
|
|
||||||
((null op)
|
|
||||||
(setf op (snark::function-name (head x))))
|
|
||||||
((not (eq op (snark::function-name (head x))))
|
|
||||||
(warn "There is more than one binary relation; using condensed detachment for ~A." op)
|
|
||||||
(return)))))))
|
|
||||||
(reverse axioms -> axioms)
|
|
||||||
(declare-function (if reverse-cd 'rcd 'cd) 2 :ordering-status :left-to-right -> cd)
|
|
||||||
(input-target target -> target target-alist)
|
|
||||||
(and (not (contains-test-target? target))
|
|
||||||
(reduce #'max target-alist :key (lambda (x) (snark::size (cdr x))))
|
|
||||||
-> *coder-maximum-target-size*)
|
|
||||||
(mapcar #'coder-input-term hints -> hints)
|
|
||||||
(identity max-syms -> *coder-term-size-limit*)
|
|
||||||
(identity max-vars -> *coder-term-vars-limit*)
|
|
||||||
(identity reverse-cd -> *coder-do-reverse-cd*)
|
|
||||||
(identity nil -> all-targets-found)
|
|
||||||
(setf *coder-step-count* 0)
|
|
||||||
(setf *coder-derivation-count* 0)
|
|
||||||
(setf *coder-maximum-term-size-found* 0)
|
|
||||||
(get-internal-run-time -> *coder-start-time*)
|
|
||||||
(loop for nsteps from min to max
|
|
||||||
do (let (targets-found)
|
|
||||||
(format t "~2%Search for ~D-step proof... " nsteps)
|
|
||||||
(force-output)
|
|
||||||
(setf targets-found (coder1 axioms target nsteps cd op kill avoid all-proofs must-use resume hints steps-to-use steps-to-use-count))
|
|
||||||
(setf resume nil)
|
|
||||||
(let ((run-time (round (- (get-internal-run-time) *coder-start-time*) internal-time-units-per-second)))
|
|
||||||
(format t "~%~D steps in ~D seconds" *coder-step-count* run-time)
|
|
||||||
(when (and *coder-run-time-limit* (< *coder-run-time-limit* run-time))
|
|
||||||
(format t "; time limit exceeded")
|
|
||||||
(return)))
|
|
||||||
(when targets-found
|
|
||||||
(setf target (remove-target target targets-found))
|
|
||||||
(setf all-targets-found (nconc targets-found all-targets-found))
|
|
||||||
(when (null target)
|
|
||||||
(return)))))
|
|
||||||
(format t ".")
|
|
||||||
(mapcar (lambda (x) (or (car (rassoc x target-alist)) x)) all-targets-found))))
|
|
||||||
|
|
||||||
(defun coder1 (axioms target nsteps cd op kill avoid all-proofs must-use resume hints steps-to-use steps-to-use-count)
|
|
||||||
(let ((together-target? (together-target? target))
|
|
||||||
(targets-found nil))
|
|
||||||
(labels
|
|
||||||
((coder2 (lines nsteps unused target* ntargets steps-to-use steps-to-use-count)
|
|
||||||
;; target* is used to record remaining targets only if target is a together-target
|
|
||||||
(cond
|
|
||||||
((eql 0 nsteps)
|
|
||||||
(incf *coder-derivation-count*)
|
|
||||||
(cond
|
|
||||||
(together-target?
|
|
||||||
(cl:assert (null target*)) ;all targets should have been matched
|
|
||||||
(print-proof lines)
|
|
||||||
(print-proof-for-otter-verification lines op)
|
|
||||||
(force-output)
|
|
||||||
(setf targets-found (rest target))
|
|
||||||
(unless all-proofs
|
|
||||||
(return-from coder1 targets-found)))
|
|
||||||
(t
|
|
||||||
(let ((found (target? target (proof-line-wff (first lines))))) ;is final wff a target?
|
|
||||||
(when found
|
|
||||||
(setf (proof-line-target (first lines)) found)
|
|
||||||
(print-proof lines)
|
|
||||||
(print-proof-for-otter-verification lines op)
|
|
||||||
(force-output)
|
|
||||||
(dolist (v found)
|
|
||||||
(pushnew v targets-found))
|
|
||||||
(unless all-proofs
|
|
||||||
(when (null (setf target (remove-target target found)))
|
|
||||||
(return-from coder1 targets-found))))))))
|
|
||||||
(t
|
|
||||||
(flet
|
|
||||||
((coder3 (x y xunused? yunused? new-line)
|
|
||||||
(let ((found (and together-target? (target? target* (proof-line-wff new-line)))))
|
|
||||||
(cond
|
|
||||||
(found
|
|
||||||
;;(princf *coder-step-count*)
|
|
||||||
(cl:assert (null (rest found)) () "More than one together-target simultaneously satisfied.")
|
|
||||||
(when (eql 0 (rem (incf *coder-step-count*) *coder-print-state-interval*))
|
|
||||||
(let ((run-time (- (get-internal-run-time) *coder-start-time*)))
|
|
||||||
(print-coder-state (cons new-line lines) run-time)
|
|
||||||
(when (and *coder-run-time-limit* (< *coder-run-time-limit* (round run-time internal-time-units-per-second)))
|
|
||||||
(return-from coder1 targets-found))))
|
|
||||||
(setf (proof-line-target new-line) found)
|
|
||||||
(coder2
|
|
||||||
(cons new-line lines)
|
|
||||||
(- nsteps 1)
|
|
||||||
(let ((unused (if xunused? (remove x unused) unused)))
|
|
||||||
(if yunused? (remove y unused) unused))
|
|
||||||
(remove-target target* found)
|
|
||||||
(- ntargets 1)
|
|
||||||
steps-to-use
|
|
||||||
steps-to-use-count))
|
|
||||||
(t
|
|
||||||
(let ((new-steps-to-use steps-to-use) (new-steps-to-use-count steps-to-use-count))
|
|
||||||
(when (< 0 steps-to-use-count)
|
|
||||||
(setf new-steps-to-use (remove-step-to-use (proof-line-wff new-line) steps-to-use))
|
|
||||||
(unless (eq steps-to-use new-steps-to-use)
|
|
||||||
(decf new-steps-to-use-count)))
|
|
||||||
(cond
|
|
||||||
((if together-target?
|
|
||||||
(>= (- nsteps 1) (+ ntargets new-steps-to-use-count))
|
|
||||||
(if (= 1 nsteps)
|
|
||||||
(= 0 steps-to-use-count)
|
|
||||||
(> (- nsteps 1) new-steps-to-use-count)))
|
|
||||||
;;(princf *coder-step-count*)
|
|
||||||
(when (eql 0 (rem (incf *coder-step-count*) *coder-print-state-interval*))
|
|
||||||
(let ((run-time (- (get-internal-run-time) *coder-start-time*)))
|
|
||||||
(print-coder-state (cons new-line lines) run-time)
|
|
||||||
(when (and *coder-run-time-limit* (< *coder-run-time-limit* (round run-time internal-time-units-per-second)))
|
|
||||||
(return-from coder1 targets-found))))
|
|
||||||
(coder2
|
|
||||||
(cons new-line lines)
|
|
||||||
(- nsteps 1)
|
|
||||||
(let ((unused (if xunused? (remove x unused) unused)))
|
|
||||||
(cons new-line (if yunused? (remove y unused) unused)))
|
|
||||||
target*
|
|
||||||
ntargets
|
|
||||||
new-steps-to-use
|
|
||||||
new-steps-to-use-count)))))))))
|
|
||||||
(declare (dynamic-extent #'coder3))
|
|
||||||
(let ((new-lines nil)
|
|
||||||
(new-line-number (+ (proof-line-number (first lines)) 1)))
|
|
||||||
(let ((nunused (length unused))
|
|
||||||
(revlines (reverse lines)))
|
|
||||||
(dolist (x revlines) ;use reverse to reorder search 2003-04-17
|
|
||||||
(let ((xunused? (member x unused))
|
|
||||||
(big nil))
|
|
||||||
(dolist (y revlines) ;use reverse to reorder search 2004-01-10
|
|
||||||
(let ((yunused? (and (not (eq x y)) (member y unused))))
|
|
||||||
(unless (> (if xunused?
|
|
||||||
(if yunused? (- nunused 1) nunused)
|
|
||||||
(if yunused? nunused (+ nunused 1)))
|
|
||||||
(if (eql 1 ntargets) nsteps (+ nsteps ntargets -1)))
|
|
||||||
(let ((just (make-compound cd (proof-line-just x) (proof-line-just y))))
|
|
||||||
(when (or big
|
|
||||||
(and (eq '> (snark::simplification-ordering-compare-terms0
|
|
||||||
just (proof-line-just (first lines)) nil '>))
|
|
||||||
(setf big t)))
|
|
||||||
(prog->
|
|
||||||
(do-cd (proof-line-wff x) (proof-line-wff y) op (eql ntargets nsteps) ->* new-wff new-wff-size cut)
|
|
||||||
(if new-wff-size
|
|
||||||
(make-proof-line new-line-number just new-wff new-wff-size)
|
|
||||||
(make-proof-line new-line-number just new-wff)
|
|
||||||
-> new-line)
|
|
||||||
(when cut
|
|
||||||
(setf (proof-line-cut new-line) t))
|
|
||||||
(cond
|
|
||||||
((and resume
|
|
||||||
(let ((l1 resume) (l2 (coder-state (cons new-line lines))))
|
|
||||||
(loop
|
|
||||||
(cond
|
|
||||||
((null l1)
|
|
||||||
(setf resume nil)
|
|
||||||
(setf *coder-step-count* -1)
|
|
||||||
(return nil))
|
|
||||||
((null l2)
|
|
||||||
(return nil))
|
|
||||||
((not (equal (pop l1) (pop l2)))
|
|
||||||
(return t))))))
|
|
||||||
)
|
|
||||||
((or hints *test1* *test2*)
|
|
||||||
(cond
|
|
||||||
((and kill (funcall kill new-line))
|
|
||||||
)
|
|
||||||
((and *test2* (backward-subsumes? new-line lines))
|
|
||||||
;; reject all derivations beginning with lines
|
|
||||||
;; when new-line is equal to an earlier line
|
|
||||||
;; as well as when it strictly subsumes it
|
|
||||||
;; as in the case below
|
|
||||||
(return-from coder2))
|
|
||||||
((forward-subsumed? new-line lines)
|
|
||||||
)
|
|
||||||
((and (not *test2*) (backward-subsumes? new-line lines))
|
|
||||||
;; don't just block adding new-line to lines but
|
|
||||||
;; reject all derivations beginning with lines
|
|
||||||
(return-from coder2))
|
|
||||||
(t
|
|
||||||
(push (list x y xunused? yunused? new-line) new-lines))))
|
|
||||||
(t
|
|
||||||
(unless (or (and kill (funcall kill new-line))
|
|
||||||
(and avoid (member (proof-line-wff new-line) avoid :test #'snark::variant-p))
|
|
||||||
(forward-subsumed? new-line lines)
|
|
||||||
(backward-subsumes? new-line lines))
|
|
||||||
(coder3 x y xunused? yunused? new-line))))
|
|
||||||
(when cut
|
|
||||||
(return)))))))))))
|
|
||||||
(when new-lines
|
|
||||||
(dolist (new-line (if hints (sort-new-lines new-lines hints) (nreverse new-lines)))
|
|
||||||
(apply #'coder3 new-line)))))))))
|
|
||||||
(let ((ntargets (if together-target? (length (rest target)) 1)))
|
|
||||||
(unless (> (+ ntargets steps-to-use-count) nsteps)
|
|
||||||
(coder2 axioms nsteps (selected-lines axioms must-use) target ntargets steps-to-use steps-to-use-count)))
|
|
||||||
targets-found)))
|
|
||||||
|
|
||||||
(defun sort-new-lines (new-lines hints)
|
|
||||||
(dolist (x new-lines)
|
|
||||||
(when (member (proof-line-wff (fifth x)) hints :test #'snark::subsumes-p)
|
|
||||||
(setf (proof-line-hint (fifth x)) t)))
|
|
||||||
(stable-sort (nreverse new-lines)
|
|
||||||
(lambda (x y)
|
|
||||||
(and (proof-line-hint (fifth x))
|
|
||||||
(not (proof-line-hint (fifth y)))))))
|
|
||||||
|
|
||||||
(defun selected-lines (lines nums)
|
|
||||||
(cond
|
|
||||||
((eq t nums)
|
|
||||||
lines)
|
|
||||||
(t
|
|
||||||
(remove-if (lambda (line) (not (member (proof-line-number line) nums))) lines))))
|
|
||||||
|
|
||||||
(defun coder-default-symbol-ordering (x y)
|
|
||||||
(if (numberp x)
|
|
||||||
(if (and (numberp y) (> x y)) '> '<)
|
|
||||||
'>))
|
|
||||||
|
|
||||||
(defun forward-subsumed? (new-line lines)
|
|
||||||
;; return true iff new-line is subsumed by an earlier line
|
|
||||||
(let ((new-wff (proof-line-wff new-line))
|
|
||||||
(new-wff-size (proof-line-wff-size new-line))
|
|
||||||
(new-wff-vars (proof-line-wff-vars new-line)))
|
|
||||||
(dolist (l lines nil)
|
|
||||||
(when (and (>= new-wff-size (proof-line-wff-size l))
|
|
||||||
(snark::subsumed-p1 new-wff (proof-line-wff l) new-wff-vars))
|
|
||||||
(return t)))))
|
|
||||||
|
|
||||||
(defun backward-subsumes? (new-line lines)
|
|
||||||
;; return true iff new-line subsumes an earlier line that is not used to derive new-line
|
|
||||||
(let ((new-wff (proof-line-wff new-line))
|
|
||||||
(new-wff-size (proof-line-wff-size new-line)))
|
|
||||||
(dolist (l lines nil)
|
|
||||||
(let ((j (proof-line-just l)))
|
|
||||||
;; don't backward subsume axioms or ancestors
|
|
||||||
(cond
|
|
||||||
((not (compound-p j)) ;l and rest of lines are all axioms
|
|
||||||
(return nil))
|
|
||||||
((and (<= new-wff-size (proof-line-wff-size l))
|
|
||||||
(snark::subsumes-p1 new-wff (proof-line-wff l) (proof-line-wff-vars l))
|
|
||||||
(not (snark::occurs-p j (proof-line-just new-line) nil)))
|
|
||||||
(return t)))))))
|
|
||||||
|
|
||||||
(defun do-cd (function x y op &optional last-line)
|
|
||||||
;; perform condensed detachment operation
|
|
||||||
;; with x as major premise and y as minor premise
|
|
||||||
;; assume x and y are variable disjoint unless (eq x y)
|
|
||||||
;; return result with new variables
|
|
||||||
(prog->
|
|
||||||
(when (and (compound-p x) (eq op (function-name (head x))))
|
|
||||||
(args x -> args)
|
|
||||||
(first args -> x1)
|
|
||||||
(second args -> x2)
|
|
||||||
(when *coder-do-reverse-cd*
|
|
||||||
(psetf x1 x2 x2 x1))
|
|
||||||
;; (cd (i x t) s) always yields t for any s if x does not occur in t
|
|
||||||
;; producing alternative derivations which differ only in which minor premise is used
|
|
||||||
;; used to be enabled by *test3*, default since 2003-08-14
|
|
||||||
(and (snark::variable-p x1) (not (snark::occurs-p x1 x2)) -> cut)
|
|
||||||
;; in this case, use same wff as major and minor premise, to avoid unnecessary use of y
|
|
||||||
;; added 2003-11-30
|
|
||||||
(when (and cut (not (eq x y)))
|
|
||||||
(return-from do-cd))
|
|
||||||
(unify x1 (if (eq x y) (snark::renumber-new y) y) ->* subst)
|
|
||||||
(snark::size x2 subst -> n)
|
|
||||||
;; don't create big terms that cannot subsume a target for the last line of proof
|
|
||||||
(unless (or (and last-line *coder-maximum-target-size* (< *coder-maximum-target-size* n))
|
|
||||||
(and *coder-term-size-limit* (< *coder-term-size-limit* n))
|
|
||||||
(and *coder-term-vars-limit* (< *coder-term-vars-limit* (length (snark::variables x2 subst)))))
|
|
||||||
(when (and (not *coder-term-size-limit*) (< *coder-maximum-term-size-found* n))
|
|
||||||
(format t " ~D syms " n)
|
|
||||||
(force-output)
|
|
||||||
(setf *coder-maximum-term-size-found* n))
|
|
||||||
(snark::renumber-new x2 subst -> x2*)
|
|
||||||
(unless cut
|
|
||||||
(setf cut (snark::variant-p x2 x2*)))
|
|
||||||
(funcall function x2* n cut)))))
|
|
||||||
|
|
||||||
(defun just-line-number (j lines)
|
|
||||||
(proof-line-number (first (member j lines :key #'proof-line-just :test #'equal-p))))
|
|
||||||
|
|
||||||
(defun just-list (j lines)
|
|
||||||
(if (compound-p j)
|
|
||||||
(cons (function-name (head j))
|
|
||||||
(mapcar (lambda (x)
|
|
||||||
(if (compound-p x) (just-line-number x lines) x))
|
|
||||||
(args j)))
|
|
||||||
j))
|
|
||||||
|
|
||||||
(defun print-proof-line-just (line lines)
|
|
||||||
(let ((n (proof-line-number line))
|
|
||||||
(j (just-list (proof-line-just line) lines)))
|
|
||||||
(format t "~2D ~A" n (if (eql n j) 'ax j)))
|
|
||||||
(when (proof-line-cut line)
|
|
||||||
(format t "!")))
|
|
||||||
|
|
||||||
(defun print-proof-line (line lines)
|
|
||||||
(let ((j (proof-line-just line)))
|
|
||||||
(format t "~%(") (print-proof-line-just line lines) (format t "~15T")
|
|
||||||
(print-term (snark::renumber (proof-line-wff line)))
|
|
||||||
(format t ")")
|
|
||||||
(cond
|
|
||||||
((compound-p j)
|
|
||||||
(format t "~84T;~2D sym~:P, ~D var~:P"
|
|
||||||
(snark::size (proof-line-wff line))
|
|
||||||
(length (snark::variables (proof-line-wff line))))
|
|
||||||
(when (proof-line-target line)
|
|
||||||
(format t " target")))
|
|
||||||
((not (member j lines
|
|
||||||
:key #'proof-line-just
|
|
||||||
:test (lambda (x y) (and (not (snark::equal-p x y)) (snark::occurs-p x y nil)))))
|
|
||||||
(format t "~84T;unused")))))
|
|
||||||
|
|
||||||
(defun print-proof-lines (lines)
|
|
||||||
(mapc (lambda (line) (print-proof-line line lines)) lines))
|
|
||||||
|
|
||||||
(defun print-proof (lines)
|
|
||||||
(format t "~2%Proof:")
|
|
||||||
(print-proof-lines (reverse lines))
|
|
||||||
(format t "~%End proof.")
|
|
||||||
(terpri))
|
|
||||||
|
|
||||||
(defun coder-state (lines)
|
|
||||||
(let ((lines (reverse lines)))
|
|
||||||
(mapcan (lambda (line)
|
|
||||||
(let ((j (just-list (proof-line-just line) lines)))
|
|
||||||
(if (consp j) (list j) nil)))
|
|
||||||
lines)))
|
|
||||||
|
|
||||||
(defun print-coder-state (lines &optional (run-time (- (get-internal-run-time) *coder-start-time*)))
|
|
||||||
(format t "~% ~A ~5Dm "
|
|
||||||
(subseq (print-current-time nil t) 4 13)
|
|
||||||
(round run-time (* 60 internal-time-units-per-second)))
|
|
||||||
(mapc (lambda (x) (princ x) (princ " ")) (coder-state lines))
|
|
||||||
(force-output))
|
|
||||||
|
|
||||||
;;; coder's target argument is either a normal-target or a together-target
|
|
||||||
;;;
|
|
||||||
;;; a single-target is one of
|
|
||||||
;;; a term - find generalization (or variant) of this term
|
|
||||||
;;; (TEST predicate)
|
|
||||||
;;;
|
|
||||||
;;; a normal-target is one of
|
|
||||||
;;; a single-target
|
|
||||||
;;; (OR normal-target1 ... normal-targetn) - search until one target is found
|
|
||||||
;;; (AND normal-target1 ... normal-targetn) - search until all targets are found
|
|
||||||
;;;
|
|
||||||
;;; a together-target is
|
|
||||||
;;; (TOGETHER single-target1 ... single-targetn) - search until all targets are found in a single derivation
|
|
||||||
;;; it is assumed that no single formula will satisfy more than one of these targets
|
|
||||||
|
|
||||||
(defvar *input-target-alist*)
|
|
||||||
|
|
||||||
(defun input-target (target)
|
|
||||||
(let ((*input-target-alist* nil))
|
|
||||||
(values (cond
|
|
||||||
((together-target? target)
|
|
||||||
(input-together-target target))
|
|
||||||
(t
|
|
||||||
(input-normal-target target)))
|
|
||||||
*input-target-alist*)))
|
|
||||||
|
|
||||||
(defun together-target? (target)
|
|
||||||
(and (consp target) (eq 'together (first target))))
|
|
||||||
|
|
||||||
(defun contains-test-target? (target)
|
|
||||||
(case (and (consp target) (first target))
|
|
||||||
(test
|
|
||||||
t)
|
|
||||||
((and or together)
|
|
||||||
(some #'contains-test-target? (rest target)))))
|
|
||||||
|
|
||||||
(defun wrap2 (f l)
|
|
||||||
(cl:assert (consp l))
|
|
||||||
(if (null (rest l)) (first l) (cons f l)))
|
|
||||||
|
|
||||||
(defun coder-input-term (x &optional variables)
|
|
||||||
(snark::renumber-new
|
|
||||||
(snark::input-term
|
|
||||||
(if (stringp x) (read-infix-term x :case (readtable-case *readtable*)) x)
|
|
||||||
:*input-wff-substitution* variables)))
|
|
||||||
|
|
||||||
(defun input-together-target (target)
|
|
||||||
(wrap2 (first target) (mapcar #'input-single-target (rest target))))
|
|
||||||
|
|
||||||
(defun input-normal-target (target)
|
|
||||||
(cond
|
|
||||||
((and (consp target) (member (first target) '(or and)))
|
|
||||||
(wrap2 (first target) (mapcar #'input-normal-target (rest target))))
|
|
||||||
(t
|
|
||||||
(input-single-target target))))
|
|
||||||
|
|
||||||
(defun input-single-target (target)
|
|
||||||
(cl:assert (not (and (consp target) (member (first target) '(or and together)))))
|
|
||||||
(cond
|
|
||||||
((and (consp target) (eq 'test (first target)))
|
|
||||||
target)
|
|
||||||
(t
|
|
||||||
(let ((target* (coder-input-term target)))
|
|
||||||
(push (cons target target*) *input-target-alist*)
|
|
||||||
target*))))
|
|
||||||
|
|
||||||
(defun target? (target x &optional l)
|
|
||||||
;; does x generalize a term in target?
|
|
||||||
(cond
|
|
||||||
((and (consp target) (member (first target) '(or and together)))
|
|
||||||
(dolist (y (rest target) l)
|
|
||||||
(setf l (target? y x l))))
|
|
||||||
((and (consp target) (eq 'test (first target)))
|
|
||||||
(if (funcall (second target) x) (adjoin target l) l))
|
|
||||||
(t
|
|
||||||
(if (snark::subsumes-p x target) (adjoin target l) l))))
|
|
||||||
|
|
||||||
(defun remove-target (target l)
|
|
||||||
(cond
|
|
||||||
((and (consp target) (eq 'or (first target)))
|
|
||||||
(let ((v (mapcar (lambda (y)
|
|
||||||
(let ((y* (remove-target y l)))
|
|
||||||
(or y* (return-from remove-target nil))))
|
|
||||||
(rest target))))
|
|
||||||
(wrap2 'or v)))
|
|
||||||
((and (consp target) (member (first target) '(and together)))
|
|
||||||
(let ((v (mapcan (lambda (y)
|
|
||||||
(let ((y* (remove-target y l)))
|
|
||||||
(and y* (list y*))))
|
|
||||||
(rest target))))
|
|
||||||
(and v (wrap2 (first target) v))))
|
|
||||||
(t
|
|
||||||
(if (member target l) nil target))))
|
|
||||||
|
|
||||||
(defun remove-step-to-use (wff steps-to-use)
|
|
||||||
(cond
|
|
||||||
((null steps-to-use)
|
|
||||||
nil)
|
|
||||||
((snark::subsumes-p wff (first steps-to-use))
|
|
||||||
(rest steps-to-use))
|
|
||||||
(t
|
|
||||||
(let* ((l (rest steps-to-use))
|
|
||||||
(l* (remove-step-to-use wff l)))
|
|
||||||
(if (eq l l*) steps-to-use (cons (first steps-to-use) l*))))))
|
|
||||||
|
|
||||||
(defun print-proof-for-otter-verification (lines op)
|
|
||||||
;; Bob Veroff provided the template for this script
|
|
||||||
(let ((lines (reverse lines)))
|
|
||||||
(format t "~%% OTTER SCRIPT TO TRY TO FIND SAME PROOF")
|
|
||||||
(format t "~% set(hyper_res). clear(print_kept). clear(print_back_sub). assign(stats_level,0).")
|
|
||||||
(format t "~% assign(bsub_hint_add_wt,-1000000). set(keep_hint_subsumers). assign(max_weight,1).")
|
|
||||||
(format t "~% list(sos). % AXIOMS:")
|
|
||||||
(dolist (l lines)
|
|
||||||
(unless (compound-p (proof-line-just l))
|
|
||||||
(format t "~% ") (print-term-for-otter2 (proof-line-wff l)) (format t ".")))
|
|
||||||
(format t "~% end_of_list.")
|
|
||||||
(cond
|
|
||||||
(*coder-do-reverse-cd*
|
|
||||||
(format t "~% list(usable). % REVERSED CONDENSED DETACHMENT RULE:")
|
|
||||||
(format t "~% -P(~A(x,y)) | -P(y) | P(x)." (string-downcase (string op))))
|
|
||||||
(t
|
|
||||||
(format t "~% list(usable). % CONDENSED DETACHMENT RULE:")
|
|
||||||
(format t "~% -P(~A(x,y)) | -P(x) | P(y)." (string-downcase (string op)))))
|
|
||||||
(format t "~% end_of_list.")
|
|
||||||
(let ((first t))
|
|
||||||
(dolist (l lines)
|
|
||||||
(when (proof-line-target l)
|
|
||||||
(cond
|
|
||||||
(first
|
|
||||||
(setf first nil)
|
|
||||||
(format t "~% list(usable). % TARGET:"))
|
|
||||||
(t
|
|
||||||
(format t " |")))
|
|
||||||
(format t "~% -") (print-term-for-otter2 (proof-line-wff l) t)))
|
|
||||||
(unless first
|
|
||||||
(format t ".~% end_of_list.")))
|
|
||||||
(format t "~% list(hints). % PROOF LINES:")
|
|
||||||
(dolist (l lines)
|
|
||||||
(format t "~% ") (print-term-for-otter2 (proof-line-wff l)) (format t ".")
|
|
||||||
(format t "~72T%") (print-proof-line-just l lines)
|
|
||||||
(when (proof-line-target l)
|
|
||||||
(format t " TARGET")))
|
|
||||||
(format t "~% end_of_list.")
|
|
||||||
(format t "~%% OTTER SCRIPT END~%")
|
|
||||||
))
|
|
||||||
|
|
||||||
(defun print-term-for-otter2 (term &optional ground)
|
|
||||||
(princ "P(")
|
|
||||||
(print-term-for-otter (snark::renumber term) ground)
|
|
||||||
(princ ")")
|
|
||||||
term)
|
|
||||||
|
|
||||||
(defun print-term-for-otter (term &optional ground)
|
|
||||||
(dereference
|
|
||||||
term nil
|
|
||||||
:if-variable (cond
|
|
||||||
(ground
|
|
||||||
(princ #\c)
|
|
||||||
(princ (snark::variable-number term)))
|
|
||||||
(t
|
|
||||||
(let ((n (snark::variable-number term)))
|
|
||||||
(cond
|
|
||||||
((> 6 n)
|
|
||||||
(princ (ecase n (0 #\x) (1 #\y) (2 #\z) (3 #\u) (4 #\v) (5 #\w))))
|
|
||||||
(t
|
|
||||||
(princ #\v)
|
|
||||||
(princ n))))))
|
|
||||||
:if-constant (cond
|
|
||||||
((numberp term)
|
|
||||||
(princ term))
|
|
||||||
(t
|
|
||||||
(princ #\c)
|
|
||||||
(princ (string-downcase (string term)))))
|
|
||||||
:if-compound (progn
|
|
||||||
(princ (string-downcase (string (function-name (head term)))))
|
|
||||||
(princ "(")
|
|
||||||
(let ((first t))
|
|
||||||
(dolist (arg (args term))
|
|
||||||
(if first (setf first nil) (princ ","))
|
|
||||||
(print-term-for-otter arg ground)))
|
|
||||||
(princ ")")))
|
|
||||||
term)
|
|
||||||
|
|
||||||
(defun comb (n m)
|
|
||||||
(/ (let ((v 1))
|
|
||||||
(dotimes (i m)
|
|
||||||
(setf v (* v (- n i))))
|
|
||||||
v)
|
|
||||||
(let ((v 1))
|
|
||||||
(dotimes (i (- m 1))
|
|
||||||
(setf v (* v (+ i 2))))
|
|
||||||
v)))
|
|
||||||
|
|
||||||
(defun shorten-proof (proof &rest options
|
|
||||||
&key (drop 3) (shorten-by 1) (naxioms 1) (targets '(-1)) all-proofs skip from to min max
|
|
||||||
(variables '(x y z u v w v0
|
|
||||||
x1 y1 z1 u1 v1 w1 v6 v7 v8 v9 v10 v11
|
|
||||||
x2 y2 z2 u2 v2 w2 v12 v13 v14 v15 v16 v17
|
|
||||||
x3 y3 z3 u3 v3 w3 v18 v19 v20 v21 v22 v23
|
|
||||||
x4 y4 z4 u4 v4 w4 v24 v25 v26 v27 v28 v29
|
|
||||||
x5 y5 z5 u5 v5 w5 v30 v31 v32 v33 v34 v35)))
|
|
||||||
;; attempt to find a shorter proof than argument proof (a list of formulas)
|
|
||||||
;; default is to assume there is a single axiom (first in proof) and single target (last in proof)
|
|
||||||
;; to try to find a shorter proof,
|
|
||||||
;; omit drop steps and search for a proof with fewer than drop steps to replace them
|
|
||||||
;;
|
|
||||||
;; :drop 0 :shorten-by 0 options can be used to reproduce proof
|
|
||||||
(print (cons 'shorten-proof (mapcar (lambda (x) (kwote x t)) (list* proof options))))
|
|
||||||
(when skip
|
|
||||||
(cl:assert (null from))
|
|
||||||
(setf from (+ skip 1)))
|
|
||||||
(let* ((l proof)
|
|
||||||
(proof-length (length proof))
|
|
||||||
(nsteps (- proof-length naxioms))
|
|
||||||
(target nil)
|
|
||||||
(source nil)
|
|
||||||
(found nil)
|
|
||||||
(count 0))
|
|
||||||
(dolist (i (reverse targets)) ;collect targets into target
|
|
||||||
(push (nth (if (> 0 i) (+ proof-length i) i) proof) target))
|
|
||||||
(dotimes (i naxioms) ;collect axioms into source
|
|
||||||
(declare (ignorable i))
|
|
||||||
(push (pop l) source))
|
|
||||||
(when (eql 1 naxioms) ;if there is only one axiom, first step is forced,
|
|
||||||
(unless (or (member 2 targets) (member (- 1 proof-length) targets))
|
|
||||||
(setf l (rest l)))) ;so omit it from candidates to be replaced
|
|
||||||
(setf l (set-difference l target)) ;l is now list of potentially replaceable nontarget steps
|
|
||||||
(prog->
|
|
||||||
(length l -> len)
|
|
||||||
(comb len drop -> ncombs)
|
|
||||||
(choose l (- len drop) ->* kept-steps) ;shorten l by drop steps in all ways
|
|
||||||
(incf count)
|
|
||||||
(when (and to (< to count))
|
|
||||||
(return-from prog->))
|
|
||||||
(when (implies from (<= from count))
|
|
||||||
(format t "~2%Shorten proof attempt ~D of ~D" count ncombs)
|
|
||||||
(when (coder source
|
|
||||||
(cons 'together (append target kept-steps))
|
|
||||||
:min (or min (- nsteps drop))
|
|
||||||
:max (or max (- nsteps shorten-by))
|
|
||||||
:all-proofs all-proofs
|
|
||||||
:variables variables)
|
|
||||||
(setf found t)
|
|
||||||
(unless all-proofs
|
|
||||||
(return-from prog->)))))
|
|
||||||
found))
|
|
||||||
|
|
||||||
(defun strip-ors (wff)
|
|
||||||
(cond
|
|
||||||
((and (consp wff) (eq 'or (first wff)))
|
|
||||||
(reduce #'append (mapcar #'strip-ors (rest wff))))
|
|
||||||
(t
|
|
||||||
(list wff))))
|
|
||||||
|
|
||||||
(defun condensed-detachment-rule-p (wff)
|
|
||||||
;; recognizer for (or (not (p (i ?x ?y))) (or (not (p ?x)) (p ?y)))
|
|
||||||
(let ((l (strip-ors wff)))
|
|
||||||
(and (= 3 (length l))
|
|
||||||
(let ((subst (some (lambda (x)
|
|
||||||
(let ((subst (pattern-match '(not (?pred (?fun ?var1 ?var2))) x)))
|
|
||||||
(and subst
|
|
||||||
(let ((var1 (sublis subst '?var1))
|
|
||||||
(var2 (sublis subst '?var2)))
|
|
||||||
(and (neq var1 var2)
|
|
||||||
(can-be-free-variable-name var1)
|
|
||||||
(can-be-free-variable-name var2)))
|
|
||||||
subst)))
|
|
||||||
l)))
|
|
||||||
(and (member (sublis subst '(not (?pred ?var1))) l :test #'equal)
|
|
||||||
(member (sublis subst '(?pred ?var2)) l :test #'equal)
|
|
||||||
subst)))))
|
|
||||||
|
|
||||||
(defun condensed-detachment-problem-p (assertions)
|
|
||||||
(and (every (lambda (x) (and (consp x) (eq 'assertion (first x)))) assertions)
|
|
||||||
(multiple-value-bind
|
|
||||||
(cd-rule subst)
|
|
||||||
(dolist (x assertions)
|
|
||||||
(let ((x (second x)))
|
|
||||||
(let ((subst (condensed-detachment-rule-p x)))
|
|
||||||
(when subst
|
|
||||||
(return (values x subst))))))
|
|
||||||
(and cd-rule
|
|
||||||
(let ((axioms nil)
|
|
||||||
(target nil)
|
|
||||||
(axiom-pattern (sublis subst '((?pred ?x))))
|
|
||||||
(target-pattern (sublis subst '(not (?pred ?x)))))
|
|
||||||
(dolist (x assertions (and axioms target (values (reverse axioms) target (sublis subst '?fun) (sublis subst '?pred))))
|
|
||||||
(let ((x (second x)))
|
|
||||||
(unless (eq cd-rule x)
|
|
||||||
(let ((x (strip-ors x)))
|
|
||||||
(cond
|
|
||||||
((pattern-match axiom-pattern x)
|
|
||||||
(push (second (first x)) axioms))
|
|
||||||
((and (null target) (every (lambda (x) (pattern-match target-pattern x)) x))
|
|
||||||
(setf target (if (null (rest x))
|
|
||||||
(second (second (first x)))
|
|
||||||
(cons 'together (mapcar (lambda (x) (second (second x))) x)))))
|
|
||||||
(t
|
|
||||||
(return nil))))))))))))
|
|
||||||
|
|
||||||
;;; coder.lisp EOF
|
|
Binary file not shown.
|
@ -1,143 +0,0 @@
|
||||||
;;; -*- Mode: Lisp; Syntax: Common-Lisp; Package: snark-lisp -*-
|
|
||||||
;;; File: collectors.lisp
|
|
||||||
;;; The contents of this file are subject to the Mozilla Public License
|
|
||||||
;;; Version 1.1 (the "License"); you may not use this file except in
|
|
||||||
;;; compliance with the License. You may obtain a copy of the License at
|
|
||||||
;;; http://www.mozilla.org/MPL/
|
|
||||||
;;;
|
|
||||||
;;; Software distributed under the License is distributed on an "AS IS"
|
|
||||||
;;; basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the
|
|
||||||
;;; License for the specific language governing rights and limitations
|
|
||||||
;;; under the License.
|
|
||||||
;;;
|
|
||||||
;;; The Original Code is SNARK.
|
|
||||||
;;; The Initial Developer of the Original Code is SRI International.
|
|
||||||
;;; Portions created by the Initial Developer are Copyright (C) 1981-2011.
|
|
||||||
;;; All Rights Reserved.
|
|
||||||
;;;
|
|
||||||
;;; Contributor(s): Mark E. Stickel <stickel@ai.sri.com>.
|
|
||||||
|
|
||||||
(in-package :snark-lisp)
|
|
||||||
|
|
||||||
(defun make-collector ()
|
|
||||||
(cons nil nil))
|
|
||||||
|
|
||||||
(defun collector-value (collector)
|
|
||||||
(car collector))
|
|
||||||
|
|
||||||
(defun collect-item (x collector)
|
|
||||||
;; as in Interlisp TCONC,
|
|
||||||
;; add single element x to the end of the list in (car collector)
|
|
||||||
;; and update (cdr collector) to point to the end of the list
|
|
||||||
(setf x (cons x nil))
|
|
||||||
(cond
|
|
||||||
((null collector)
|
|
||||||
(cons x x))
|
|
||||||
((null (car collector))
|
|
||||||
(rplacd collector (setf (car collector) x)))
|
|
||||||
(t
|
|
||||||
(rplacd collector (setf (cddr collector) x)))))
|
|
||||||
|
|
||||||
(defun collect-list (l collector)
|
|
||||||
;; as in Interlisp LCONC,
|
|
||||||
;; add list l to the end of the list in (car collector)
|
|
||||||
;; and update (cdr collector) to point to the end of the list
|
|
||||||
(cond
|
|
||||||
((null l)
|
|
||||||
collector)
|
|
||||||
((null collector)
|
|
||||||
(cons l (last l)))
|
|
||||||
((null (car collector))
|
|
||||||
(rplacd collector (last (setf (car collector) l))))
|
|
||||||
(t
|
|
||||||
(rplacd collector (last (setf (cddr collector) l))))))
|
|
||||||
|
|
||||||
(defstruct (queue
|
|
||||||
(:constructor make-queue ())
|
|
||||||
(:copier nil))
|
|
||||||
(list nil :type list)
|
|
||||||
(last nil :type list))
|
|
||||||
|
|
||||||
(defun queue-empty-p (queue)
|
|
||||||
(null (queue-list queue)))
|
|
||||||
|
|
||||||
(defun enqueue (item queue)
|
|
||||||
(let ((l (cons item nil)))
|
|
||||||
(setf (queue-last queue) (if (queue-list queue) (setf (rest (queue-last queue)) l) (setf (queue-list queue) l)))
|
|
||||||
item))
|
|
||||||
|
|
||||||
(defun dequeue (queue)
|
|
||||||
(let ((l (queue-list queue)))
|
|
||||||
(if l
|
|
||||||
(prog1 (first l) (setf (queue-list queue) (or (rest l) (setf (queue-last queue) nil))))
|
|
||||||
nil)))
|
|
||||||
|
|
||||||
(defmacro collect (item place)
|
|
||||||
;; like (setf place (nconc place (list item)))
|
|
||||||
;; except last cell of list is remembered in place-last
|
|
||||||
;; so that operation is O(1)
|
|
||||||
;; it can be used instead of (push item place) + (nreverse place) loop idiom
|
|
||||||
;; user must declare place-last variable or slot
|
|
||||||
(let* ((args (if (atom place)
|
|
||||||
nil
|
|
||||||
(mapcar (lambda (arg) (list (gensym) arg)) (rest place))))
|
|
||||||
(place (if (atom place)
|
|
||||||
place
|
|
||||||
(cons (first place) (mapcar #'first args))))
|
|
||||||
(place-last (if (atom place)
|
|
||||||
(intern (concatenate
|
|
||||||
'string
|
|
||||||
(symbol-name place)
|
|
||||||
(symbol-name :-last)))
|
|
||||||
(cons (intern (concatenate
|
|
||||||
'string
|
|
||||||
(symbol-name (first place))
|
|
||||||
(symbol-name :-last)))
|
|
||||||
(rest place))))
|
|
||||||
(v (gensym))
|
|
||||||
(l (gensym)))
|
|
||||||
`(let* ((,v (cons ,item nil)) ,@args (,l ,place))
|
|
||||||
(cond
|
|
||||||
((null ,l)
|
|
||||||
(setf ,place (setf ,place-last ,v)))
|
|
||||||
(t
|
|
||||||
(rplacd ,place-last (setf ,place-last ,v))
|
|
||||||
,l)))))
|
|
||||||
|
|
||||||
(defmacro ncollect (list place)
|
|
||||||
;; like (setf place (nconc place list))
|
|
||||||
;; except last cell of list is remembered in place-last
|
|
||||||
(let* ((args (if (atom place)
|
|
||||||
nil
|
|
||||||
(mapcar (lambda (arg) (list (gensym) arg)) (rest place))))
|
|
||||||
(place (if (atom place)
|
|
||||||
place
|
|
||||||
(cons (first place) (mapcar #'first args))))
|
|
||||||
(place-last (if (atom place)
|
|
||||||
(intern (concatenate
|
|
||||||
'string
|
|
||||||
(symbol-name place)
|
|
||||||
(symbol-name :-last)))
|
|
||||||
(cons (intern (concatenate
|
|
||||||
'string
|
|
||||||
(symbol-name (first place))
|
|
||||||
(symbol-name :-last)))
|
|
||||||
(rest place))))
|
|
||||||
(v (gensym))
|
|
||||||
(l (gensym))
|
|
||||||
(e (gensym)))
|
|
||||||
`(let* ((,v ,list) ,@args (,l ,place))
|
|
||||||
(if (null ,v)
|
|
||||||
,l
|
|
||||||
(let ((,e (rest ,v)))
|
|
||||||
(setf ,e (if (null ,e) ,v (last ,e)))
|
|
||||||
(cond
|
|
||||||
((null ,l)
|
|
||||||
(setf ,place-last ,e)
|
|
||||||
(setf ,place ,v))
|
|
||||||
(t
|
|
||||||
(rplacd ,place-last ,v)
|
|
||||||
(setf ,place-last ,e)
|
|
||||||
,l)))))))
|
|
||||||
|
|
||||||
;;; collectors.lisp EOF
|
|
Binary file not shown.
|
@ -1,550 +0,0 @@
|
||||||
;;; -*- Mode: Lisp; Syntax: Common-Lisp; Package: snark -*-
|
|
||||||
;;; File: connectives.lisp
|
|
||||||
;;; The contents of this file are subject to the Mozilla Public License
|
|
||||||
;;; Version 1.1 (the "License"); you may not use this file except in
|
|
||||||
;;; compliance with the License. You may obtain a copy of the License at
|
|
||||||
;;; http://www.mozilla.org/MPL/
|
|
||||||
;;;
|
|
||||||
;;; Software distributed under the License is distributed on an "AS IS"
|
|
||||||
;;; basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the
|
|
||||||
;;; License for the specific language governing rights and limitations
|
|
||||||
;;; under the License.
|
|
||||||
;;;
|
|
||||||
;;; The Original Code is SNARK.
|
|
||||||
;;; The Initial Developer of the Original Code is SRI International.
|
|
||||||
;;; Portions created by the Initial Developer are Copyright (C) 1981-2012.
|
|
||||||
;;; All Rights Reserved.
|
|
||||||
;;;
|
|
||||||
;;; Contributor(s): Mark E. Stickel <stickel@ai.sri.com>.
|
|
||||||
|
|
||||||
(in-package :snark)
|
|
||||||
|
|
||||||
;;; wff = well-formed formula
|
|
||||||
;;; atom = atomic fomula
|
|
||||||
|
|
||||||
(defun not-wff-error (x &optional subst)
|
|
||||||
(error "~A is not a formula." (term-to-lisp x subst)))
|
|
||||||
|
|
||||||
(defun not-clause-error (x &optional subst)
|
|
||||||
(error "~A is not a clause." (term-to-lisp x subst)))
|
|
||||||
|
|
||||||
(defun head-is-logical-symbol (wff)
|
|
||||||
(dereference
|
|
||||||
wff nil
|
|
||||||
:if-constant nil
|
|
||||||
:if-variable (not-wff-error wff)
|
|
||||||
:if-compound-cons (not-wff-error wff)
|
|
||||||
:if-compound-appl (function-logical-symbol-p (heada wff))))
|
|
||||||
|
|
||||||
(defun negation-p (wff)
|
|
||||||
(eq 'not (head-is-logical-symbol wff)))
|
|
||||||
|
|
||||||
(defun conjunction-p (wff)
|
|
||||||
(eq 'and (head-is-logical-symbol wff)))
|
|
||||||
|
|
||||||
(defun disjunction-p (wff)
|
|
||||||
(eq 'or (head-is-logical-symbol wff)))
|
|
||||||
|
|
||||||
(defun implication-p (wff)
|
|
||||||
(eq 'implies (head-is-logical-symbol wff)))
|
|
||||||
|
|
||||||
(defun reverse-implication-p (wff)
|
|
||||||
(eq 'implied-by (head-is-logical-symbol wff)))
|
|
||||||
|
|
||||||
(defun equivalence-p (wff)
|
|
||||||
(eq 'iff (head-is-logical-symbol wff)))
|
|
||||||
|
|
||||||
(defun exclusive-or-p (wff)
|
|
||||||
(eq 'xor (head-is-logical-symbol wff)))
|
|
||||||
|
|
||||||
(defun conditional-p (wff)
|
|
||||||
(eq 'if (head-is-logical-symbol wff)))
|
|
||||||
|
|
||||||
(defun universal-quantification-p (wff)
|
|
||||||
(eq 'forall (head-is-logical-symbol wff)))
|
|
||||||
|
|
||||||
(defun existential-quantification-p (wff)
|
|
||||||
(eq 'exists (head-is-logical-symbol wff)))
|
|
||||||
|
|
||||||
(defun atom-p (wff)
|
|
||||||
(not (head-is-logical-symbol wff)))
|
|
||||||
|
|
||||||
(defun literal-p (wff &optional (polarity :pos) strict)
|
|
||||||
;; returns (values atom polarity)
|
|
||||||
;; only atomic formulas and negated atomic formulas are strict literals
|
|
||||||
;; nonstrict literals can have nested negations
|
|
||||||
(let ((v (head-is-logical-symbol wff)))
|
|
||||||
(cond
|
|
||||||
((null v)
|
|
||||||
(values wff polarity))
|
|
||||||
((eq 'not v)
|
|
||||||
(let ((wff1 (arg1a wff)))
|
|
||||||
(if strict
|
|
||||||
(and (atom-p wff1) (values wff1 (opposite-polarity polarity)))
|
|
||||||
(literal-p wff1 (opposite-polarity polarity)))))
|
|
||||||
(t
|
|
||||||
nil))))
|
|
||||||
|
|
||||||
(defun clause-p (wff &optional no-true-false strict neg)
|
|
||||||
;; only atomic formulas, negated atomic formulas, their disjunctions, and (optionally) true and false are strict clauses
|
|
||||||
;; nonstrict clauses are implications etc. interpretable as single clauses
|
|
||||||
(labels
|
|
||||||
((clause-p (wff neg)
|
|
||||||
(case (head-is-logical-symbol wff)
|
|
||||||
((nil)
|
|
||||||
(implies no-true-false (not (or (eq true wff) (eq false wff)))))
|
|
||||||
(not
|
|
||||||
(if strict
|
|
||||||
(atom-p (arg1a wff))
|
|
||||||
(clause-p (arg1a wff) (not neg))))
|
|
||||||
(and
|
|
||||||
(and (not strict)
|
|
||||||
neg
|
|
||||||
(dolist (arg (argsa wff) t)
|
|
||||||
(unless (clause-p arg t)
|
|
||||||
(return nil)))))
|
|
||||||
(or
|
|
||||||
(and (not neg)
|
|
||||||
(if strict
|
|
||||||
(dolist (arg (argsa wff) t)
|
|
||||||
(unless (literal-p arg :pos t)
|
|
||||||
(return nil)))
|
|
||||||
(dolist (arg (argsa wff) t)
|
|
||||||
(unless (clause-p arg nil)
|
|
||||||
(return nil))))))
|
|
||||||
(implies
|
|
||||||
(and (not strict)
|
|
||||||
(not neg)
|
|
||||||
(let ((args (argsa wff)))
|
|
||||||
(and (clause-p (first args) t)
|
|
||||||
(clause-p (second args) nil)))))
|
|
||||||
(implied-by
|
|
||||||
(and (not strict)
|
|
||||||
(not neg)
|
|
||||||
(let ((args (argsa wff)))
|
|
||||||
(and (clause-p (first args) nil)
|
|
||||||
(clause-p (second args) t))))))))
|
|
||||||
(clause-p wff neg)))
|
|
||||||
|
|
||||||
(defun equality-relation-symbol-p (fn)
|
|
||||||
(eq '= (function-boolean-valued-p fn)))
|
|
||||||
|
|
||||||
(defun equality-p (wff)
|
|
||||||
(dereference
|
|
||||||
wff nil
|
|
||||||
:if-constant nil
|
|
||||||
:if-variable (not-wff-error wff)
|
|
||||||
:if-compound-cons (not-wff-error wff)
|
|
||||||
:if-compound-appl (equality-relation-symbol-p (head wff))))
|
|
||||||
|
|
||||||
(defun positive-equality-wff-p (wff)
|
|
||||||
;; nothing but strictly positive occurrences of equalities
|
|
||||||
(prog->
|
|
||||||
(map-atoms-in-wff wff ->* atom polarity)
|
|
||||||
(unless (and (eq :pos polarity) (equality-p atom))
|
|
||||||
(return-from positive-equality-wff-p nil)))
|
|
||||||
t)
|
|
||||||
|
|
||||||
(declare-snark-option eliminate-negations nil nil)
|
|
||||||
(declare-snark-option flatten-connectives t t) ;e.g., replace (and a (and b c)) by (and a b c)
|
|
||||||
(declare-snark-option ex-join-negation t t) ;e.g., replace (equiv a false) by (not a)
|
|
||||||
|
|
||||||
(defun conjoin* (wffs &optional subst)
|
|
||||||
(ao-join* wffs subst *and* true))
|
|
||||||
|
|
||||||
(defun disjoin* (wffs &optional subst)
|
|
||||||
(ao-join* wffs subst *or* false))
|
|
||||||
|
|
||||||
(defun conjoin (wff1 wff2 &optional subst)
|
|
||||||
(cond
|
|
||||||
((or (eq wff1 wff2) (eq true wff1) (eq false wff2))
|
|
||||||
wff2)
|
|
||||||
((or (eq false wff1) (eq true wff2))
|
|
||||||
wff1)
|
|
||||||
(t
|
|
||||||
(ao-join* (list wff1 wff2) subst *and* true))))
|
|
||||||
|
|
||||||
(defun disjoin (wff1 wff2 &optional subst)
|
|
||||||
(cond
|
|
||||||
((or (eq wff1 wff2) (eq false wff1) (eq true wff2))
|
|
||||||
wff2)
|
|
||||||
((or (eq true wff1) (eq false wff2))
|
|
||||||
wff1)
|
|
||||||
(t
|
|
||||||
(ao-join* (list wff1 wff2) subst *or* false))))
|
|
||||||
|
|
||||||
(defun ao-join* (wffs subst connective identity)
|
|
||||||
;; create conjunction or disjunction of wffs
|
|
||||||
;; handle true, false, equal and complementary wffs
|
|
||||||
(do ((not-identity (if (eq true identity) false true))
|
|
||||||
(wffs* nil) wffs*-last
|
|
||||||
(poswffs* nil)
|
|
||||||
(negwffs* nil)
|
|
||||||
wff)
|
|
||||||
((null wffs)
|
|
||||||
(cond
|
|
||||||
((null wffs*)
|
|
||||||
identity)
|
|
||||||
((null (rest wffs*))
|
|
||||||
(first wffs*))
|
|
||||||
((flatten-connectives?)
|
|
||||||
(make-compound* connective wffs*))
|
|
||||||
(t
|
|
||||||
(make-compound2 connective wffs*))))
|
|
||||||
(setf wff (pop wffs))
|
|
||||||
(when subst
|
|
||||||
(setf wff (instantiate wff subst)))
|
|
||||||
(cond
|
|
||||||
((and (compound-p wff) (eq connective (head wff)))
|
|
||||||
(setf wffs (if wffs (append (argsa wff) wffs) (argsa wff))))
|
|
||||||
(t
|
|
||||||
(mvlet (((values wff neg) (not-not-eliminate wff)))
|
|
||||||
(if neg
|
|
||||||
(cond
|
|
||||||
((and poswffs* (hts-member-p neg poswffs*))
|
|
||||||
(return not-identity))
|
|
||||||
((hts-adjoin-p neg (or negwffs* (setf negwffs* (make-hash-term-set))))
|
|
||||||
(collect wff wffs*)))
|
|
||||||
(cond
|
|
||||||
((eq identity wff)
|
|
||||||
)
|
|
||||||
((eq not-identity wff)
|
|
||||||
(return not-identity))
|
|
||||||
((and negwffs* (hts-member-p wff negwffs*))
|
|
||||||
(return not-identity))
|
|
||||||
((hts-adjoin-p wff (or poswffs* (setf poswffs* (make-hash-term-set))))
|
|
||||||
(collect wff wffs*)))))))))
|
|
||||||
|
|
||||||
(defun not-not-eliminate (wff)
|
|
||||||
(let ((neg nil) -wff)
|
|
||||||
(loop
|
|
||||||
(dereference
|
|
||||||
wff nil
|
|
||||||
:if-variable (return-from not-not-eliminate
|
|
||||||
(if neg (values -wff wff) wff))
|
|
||||||
:if-constant (return-from not-not-eliminate
|
|
||||||
(cond
|
|
||||||
((eq true wff)
|
|
||||||
(if neg false true))
|
|
||||||
((eq false wff)
|
|
||||||
(if neg true false))
|
|
||||||
(t
|
|
||||||
(if neg (values -wff wff) wff))))
|
|
||||||
:if-compound (cond
|
|
||||||
((eq *not* (head wff))
|
|
||||||
(if neg (setf neg nil) (setf neg t -wff wff))
|
|
||||||
(setf wff (arg1a wff)))
|
|
||||||
(t
|
|
||||||
(return-from not-not-eliminate
|
|
||||||
(if neg (values -wff wff) wff))))))))
|
|
||||||
|
|
||||||
(defun make-equivalence* (wffs &optional subst)
|
|
||||||
(ex-join* wffs subst *iff* true))
|
|
||||||
|
|
||||||
(defun make-exclusive-or* (wffs &optional subst)
|
|
||||||
(ex-join* wffs subst *xor* false))
|
|
||||||
|
|
||||||
(defun make-equivalence (wff1 wff2 &optional subst)
|
|
||||||
(cond
|
|
||||||
((eq wff1 wff2)
|
|
||||||
true)
|
|
||||||
((eq true wff1)
|
|
||||||
wff2)
|
|
||||||
((eq true wff2)
|
|
||||||
wff1)
|
|
||||||
(t
|
|
||||||
(make-equivalence* (list wff1 wff2) subst))))
|
|
||||||
|
|
||||||
(defun make-exclusive-or (wff1 wff2 &optional subst)
|
|
||||||
(cond
|
|
||||||
((eq wff1 wff2)
|
|
||||||
false)
|
|
||||||
((eq false wff1)
|
|
||||||
wff2)
|
|
||||||
((eq false wff2)
|
|
||||||
wff1)
|
|
||||||
(t
|
|
||||||
(make-exclusive-or* (list wff1 wff2) subst))))
|
|
||||||
|
|
||||||
(defun ex-join* (wffs subst connective identity)
|
|
||||||
;; create equivalence or exclusive-or of wffs
|
|
||||||
;; handle true, false, equal and complementary wffs
|
|
||||||
(let ((not-identity (if (eq true identity) false true))
|
|
||||||
n n1 n2 negate)
|
|
||||||
(setf n (length (setf wffs (argument-list-a1 connective wffs subst identity))))
|
|
||||||
(setf n1 (length (setf wffs (remove not-identity wffs))))
|
|
||||||
(setf negate (oddp (- n n1)))
|
|
||||||
(setf n n1)
|
|
||||||
(do ((wffs* nil) wff)
|
|
||||||
((null wffs)
|
|
||||||
(cond
|
|
||||||
((null wffs*)
|
|
||||||
(if negate not-identity identity))
|
|
||||||
(t
|
|
||||||
(when negate
|
|
||||||
(setf wffs* (if (ex-join-negation?)
|
|
||||||
(cons (negate (first wffs*)) (rest wffs*))
|
|
||||||
(cons not-identity wffs*))))
|
|
||||||
(cond
|
|
||||||
((null (rest wffs*))
|
|
||||||
(first wffs*))
|
|
||||||
((flatten-connectives?)
|
|
||||||
(make-compound* connective (nreverse wffs*)))
|
|
||||||
(t
|
|
||||||
(make-compound2 connective (nreverse wffs*)))))))
|
|
||||||
(setf wff (pop wffs))
|
|
||||||
(setf n1 (length (setf wffs (remove wff wffs :test (lambda (x y) (equal-p x y subst))))))
|
|
||||||
(setf n2 (length (setf wffs (remove wff wffs :test (lambda (x y) (complement-p x y subst))))))
|
|
||||||
(psetq n1 (- n n1) ;count of wff in wffs
|
|
||||||
n2 (- n1 n2) ;count of ~wff in wffs
|
|
||||||
n n2) ;length of new value of wffs
|
|
||||||
(cond
|
|
||||||
((evenp n1)
|
|
||||||
(when (oddp n2)
|
|
||||||
(push wff wffs*)
|
|
||||||
(setf negate (not negate)) ;was wrong (setf negate t); fixed 2011-05-13
|
|
||||||
))
|
|
||||||
((evenp n2)
|
|
||||||
(push wff wffs*))
|
|
||||||
(t
|
|
||||||
(setf negate (not negate)) ;was wrong (setf negate t); fixed 2011-05-13
|
|
||||||
)))))
|
|
||||||
|
|
||||||
(defun negate0 (wffs &optional subst)
|
|
||||||
(declare (ignore subst))
|
|
||||||
(cl:assert (eql 1 (length wffs)))
|
|
||||||
(make-compound* *not* wffs))
|
|
||||||
|
|
||||||
(defun negate* (wffs &optional subst)
|
|
||||||
(cl:assert (eql 1 (length wffs)))
|
|
||||||
(negate (first wffs) subst))
|
|
||||||
|
|
||||||
(defun make-implication* (wffs &optional subst)
|
|
||||||
(cl:assert (eql 2 (length wffs)))
|
|
||||||
(make-implication (first wffs) (second wffs) subst))
|
|
||||||
|
|
||||||
(defun make-reverse-implication* (wffs &optional subst)
|
|
||||||
(cl:assert (eql 2 (length wffs)))
|
|
||||||
(make-reverse-implication (first wffs) (second wffs) subst))
|
|
||||||
|
|
||||||
(defun make-conditional* (wffs &optional subst)
|
|
||||||
(cl:assert (eql 3 (length wffs)))
|
|
||||||
(make-conditional (first wffs) (second wffs) (third wffs) subst))
|
|
||||||
|
|
||||||
(defun make-conditional-answer* (wffs &optional subst)
|
|
||||||
(cl:assert (eql 3 (length wffs)))
|
|
||||||
(make-conditional-answer (first wffs) (second wffs) (third wffs) subst))
|
|
||||||
|
|
||||||
(defun negate (wff &optional subst)
|
|
||||||
(dereference
|
|
||||||
wff subst
|
|
||||||
:if-constant (cond
|
|
||||||
((eq true wff)
|
|
||||||
false)
|
|
||||||
((eq false wff)
|
|
||||||
true)
|
|
||||||
((eliminate-negations?)
|
|
||||||
(proposition-complementer wff))
|
|
||||||
(t
|
|
||||||
(make-compound *not* wff)))
|
|
||||||
:if-variable (not-wff-error wff)
|
|
||||||
:if-compound-cons (not-wff-error wff)
|
|
||||||
:if-compound-appl (let ((head (heada wff)))
|
|
||||||
(ecase (function-logical-symbol-p head)
|
|
||||||
((nil) ;atomic
|
|
||||||
(cond
|
|
||||||
((eliminate-negations?)
|
|
||||||
(make-compound* (relation-complementer head) (argsa wff)))
|
|
||||||
(t
|
|
||||||
(make-compound *not* wff))))
|
|
||||||
(not
|
|
||||||
(arg1a wff))
|
|
||||||
(and
|
|
||||||
(disjoin* (mapcar (lambda (arg)
|
|
||||||
(negate arg subst))
|
|
||||||
(argsa wff))
|
|
||||||
subst))
|
|
||||||
(or
|
|
||||||
(conjoin* (mapcar (lambda (arg)
|
|
||||||
(negate arg subst))
|
|
||||||
(argsa wff))
|
|
||||||
subst))
|
|
||||||
((implies implied-by iff xor)
|
|
||||||
(make-compound *not* wff))
|
|
||||||
(if
|
|
||||||
(let ((args (argsa wff)))
|
|
||||||
(make-compound head
|
|
||||||
(first args)
|
|
||||||
(negate (second args) subst)
|
|
||||||
(negate (third args) subst))))))))
|
|
||||||
|
|
||||||
(defun relation-complementer (fn)
|
|
||||||
;; if complement has special properties
|
|
||||||
;; such as associativity, rewrites, etc.,
|
|
||||||
;; these must be declared explicitly by the user
|
|
||||||
(or (function-complement fn)
|
|
||||||
(setf (function-complement fn)
|
|
||||||
(declare-relation (complement-name (function-name fn)) (function-arity fn)))))
|
|
||||||
|
|
||||||
(defun proposition-complementer (const)
|
|
||||||
(or (constant-complement const)
|
|
||||||
(setf (constant-complement const)
|
|
||||||
(declare-proposition (complement-name (constant-name const))))))
|
|
||||||
|
|
||||||
(defun complement-name (nm &optional noninterned)
|
|
||||||
(let* ((s (symbol-name nm))
|
|
||||||
(~s (if (eql #\~ (char s 0))
|
|
||||||
(subseq s 1)
|
|
||||||
(to-string "~" s))))
|
|
||||||
(if noninterned
|
|
||||||
(make-symbol ~s)
|
|
||||||
(intern ~s (symbol-package nm)))))
|
|
||||||
|
|
||||||
(defun make-implication (wff1 wff2 &optional subst)
|
|
||||||
(cond
|
|
||||||
((eq true wff1)
|
|
||||||
wff2)
|
|
||||||
((eq true wff2)
|
|
||||||
wff2)
|
|
||||||
((eq false wff1)
|
|
||||||
true)
|
|
||||||
((eq false wff2)
|
|
||||||
(negate wff1 subst))
|
|
||||||
((equal-p wff1 wff2 subst)
|
|
||||||
true)
|
|
||||||
((complement-p wff1 wff2 subst)
|
|
||||||
wff2)
|
|
||||||
((and (compound-p wff2) (eq *implies* (head wff2)))
|
|
||||||
(let ((args2 (argsa wff2)))
|
|
||||||
(make-implication (conjoin wff1 (first args2) subst) (second args2) subst)))
|
|
||||||
((eliminate-negations?)
|
|
||||||
(disjoin (negate wff1 subst) wff2 subst))
|
|
||||||
(t
|
|
||||||
(make-compound *implies* wff1 wff2))))
|
|
||||||
|
|
||||||
(defun make-reverse-implication (wff2 wff1 &optional subst)
|
|
||||||
(cond
|
|
||||||
((eq true wff1)
|
|
||||||
wff2)
|
|
||||||
((eq true wff2)
|
|
||||||
wff2)
|
|
||||||
((eq false wff1)
|
|
||||||
true)
|
|
||||||
((eq false wff2)
|
|
||||||
(negate wff1 subst))
|
|
||||||
((equal-p wff1 wff2 subst)
|
|
||||||
true)
|
|
||||||
((complement-p wff1 wff2 subst)
|
|
||||||
wff2)
|
|
||||||
((and (compound-p wff2) (eq *implied-by* (head wff2)))
|
|
||||||
(let ((args2 (argsa wff2)))
|
|
||||||
(make-reverse-implication (first args2) (conjoin (second args2) wff1 subst) subst)))
|
|
||||||
((eliminate-negations?)
|
|
||||||
(disjoin wff2 (negate wff1 subst) subst))
|
|
||||||
(t
|
|
||||||
(make-compound *implied-by* wff2 wff1))))
|
|
||||||
|
|
||||||
(defun make-conditional (wff1 wff2 wff3 &optional subst)
|
|
||||||
(cond
|
|
||||||
((eq true wff1)
|
|
||||||
wff2)
|
|
||||||
((eq false wff1)
|
|
||||||
wff3)
|
|
||||||
((negation-p wff1)
|
|
||||||
(make-conditional (arg1 wff1) wff3 wff2 subst))
|
|
||||||
(t
|
|
||||||
;; (setf wff2 (substitute true wff1 wff2 subst))
|
|
||||||
;; (setf wff3 (substitute false wff1 wff3 subst))
|
|
||||||
(setf wff2 (prog->
|
|
||||||
(map-atoms-in-wff-and-compose-result wff2 ->* atom polarity)
|
|
||||||
(declare (ignore polarity))
|
|
||||||
(if (equal-p wff1 atom subst) true atom)))
|
|
||||||
(setf wff3 (prog->
|
|
||||||
(map-atoms-in-wff-and-compose-result wff3 ->* atom polarity)
|
|
||||||
(declare (ignore polarity))
|
|
||||||
(if (equal-p wff1 atom subst) false atom)))
|
|
||||||
(cond
|
|
||||||
((eq true wff2)
|
|
||||||
(disjoin wff1 wff3 subst))
|
|
||||||
((eq false wff2)
|
|
||||||
(conjoin (negate wff1 subst) wff3 subst))
|
|
||||||
((eq true wff3)
|
|
||||||
(disjoin (negate wff1 subst) wff2 subst))
|
|
||||||
((eq false wff3)
|
|
||||||
(conjoin wff1 wff2 subst))
|
|
||||||
((equal-p wff2 wff3 subst)
|
|
||||||
wff2)
|
|
||||||
((eliminate-negations?)
|
|
||||||
(disjoin
|
|
||||||
(conjoin wff1 wff2 subst)
|
|
||||||
(conjoin (negate wff1 subst) wff3 subst)
|
|
||||||
subst))
|
|
||||||
(t
|
|
||||||
(make-compound *if* wff1 wff2 wff3))))))
|
|
||||||
|
|
||||||
(defun make-conditional-answer (wff1 wff2 wff3 &optional subst)
|
|
||||||
(cond
|
|
||||||
((eq true wff1)
|
|
||||||
wff2)
|
|
||||||
((eq false wff1)
|
|
||||||
wff3)
|
|
||||||
((negation-p wff1)
|
|
||||||
(make-conditional-answer (arg1 wff1) wff3 wff2 subst))
|
|
||||||
((equal-p wff2 wff3 subst)
|
|
||||||
wff2)
|
|
||||||
(t
|
|
||||||
(make-compound *answer-if* wff1 wff2 wff3))))
|
|
||||||
|
|
||||||
(defun make-equality0 (term1 term2 &optional (relation *=*))
|
|
||||||
(make-compound relation term1 term2))
|
|
||||||
|
|
||||||
(defun make-equality (term1 term2 &optional subst (relation *=*))
|
|
||||||
(cond
|
|
||||||
((equal-p term1 term2 subst)
|
|
||||||
true)
|
|
||||||
(t
|
|
||||||
(make-compound relation term1 term2))))
|
|
||||||
|
|
||||||
(defun complement-p (wff1 wff2 &optional subst)
|
|
||||||
(let ((appl nil) (neg nil))
|
|
||||||
(loop
|
|
||||||
(dereference
|
|
||||||
wff1 nil
|
|
||||||
:if-constant (return)
|
|
||||||
:if-variable (not-wff-error wff1)
|
|
||||||
:if-compound-cons (not-wff-error wff1)
|
|
||||||
:if-compound-appl (if (eq *not* (heada wff1))
|
|
||||||
(setf neg (not neg) wff1 (arg1a wff1))
|
|
||||||
(return (setf appl t)))))
|
|
||||||
(loop
|
|
||||||
(dereference
|
|
||||||
wff2 nil
|
|
||||||
:if-constant (return (and neg (eql wff1 wff2)))
|
|
||||||
:if-variable (not-wff-error wff2)
|
|
||||||
:if-compound-cons (not-wff-error wff2)
|
|
||||||
:if-compound-appl (if (eq *not* (heada wff2))
|
|
||||||
(setf neg (not neg) wff2 (arg1a wff2))
|
|
||||||
(return (and appl neg (equal-p wff1 wff2 subst))))))))
|
|
||||||
|
|
||||||
(defun equal-or-complement-p (wff1 wff2 &optional subst)
|
|
||||||
(let ((appl nil) (neg nil))
|
|
||||||
(loop
|
|
||||||
(dereference
|
|
||||||
wff1 nil
|
|
||||||
:if-constant (return)
|
|
||||||
:if-variable (not-wff-error wff1)
|
|
||||||
:if-compound-cons (not-wff-error wff1)
|
|
||||||
:if-compound-appl (if (eq *not* (heada wff1))
|
|
||||||
(setf neg (not neg) wff1 (arg1a wff1))
|
|
||||||
(return (setf appl t)))))
|
|
||||||
(loop
|
|
||||||
(dereference
|
|
||||||
wff2 nil
|
|
||||||
:if-constant (return (and (eql wff1 wff2) (if neg :complement :equal)))
|
|
||||||
:if-variable (not-wff-error wff2)
|
|
||||||
:if-compound-cons (not-wff-error wff2)
|
|
||||||
:if-compound-appl (if (eq *not* (heada wff2))
|
|
||||||
(setf neg (not neg) wff2 (arg1a wff2))
|
|
||||||
(return (and appl (equal-p wff1 wff2 subst) (if neg :complement :equal))))))))
|
|
||||||
|
|
||||||
;;; connectives.lisp EOF
|
|
Binary file not shown.
|
@ -1,305 +0,0 @@
|
||||||
;;; -*- Mode: Lisp; Syntax: Common-Lisp; Package: snark -*-
|
|
||||||
;;; File: constants.lisp
|
|
||||||
;;; The contents of this file are subject to the Mozilla Public License
|
|
||||||
;;; Version 1.1 (the "License"); you may not use this file except in
|
|
||||||
;;; compliance with the License. You may obtain a copy of the License at
|
|
||||||
;;; http://www.mozilla.org/MPL/
|
|
||||||
;;;
|
|
||||||
;;; Software distributed under the License is distributed on an "AS IS"
|
|
||||||
;;; basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the
|
|
||||||
;;; License for the specific language governing rights and limitations
|
|
||||||
;;; under the License.
|
|
||||||
;;;
|
|
||||||
;;; The Original Code is SNARK.
|
|
||||||
;;; The Initial Developer of the Original Code is SRI International.
|
|
||||||
;;; Portions created by the Initial Developer are Copyright (C) 1981-2012.
|
|
||||||
;;; All Rights Reserved.
|
|
||||||
;;;
|
|
||||||
;;; Contributor(s): Mark E. Stickel <stickel@ai.sri.com>.
|
|
||||||
|
|
||||||
(in-package :snark)
|
|
||||||
|
|
||||||
;;; Lisp symbols, strings, numbers, and characters are used directly as SNARK constants
|
|
||||||
;;; but SNARK needs to associate information with them
|
|
||||||
;;; it is stored in constant-info structures found in *constant-info-table* hash-array
|
|
||||||
;;; or *number-info-table* or *string-info-table* in the case of numbers and strings
|
|
||||||
;;; that only require sort information be stored
|
|
||||||
|
|
||||||
(defstruct constant-info
|
|
||||||
(hash-code0 (make-atom-hash-code) :read-only t)
|
|
||||||
(boolean-valued-p0 nil) ;overloaded to be input name of the proposition
|
|
||||||
(constructor0 nil)
|
|
||||||
(magic t) ;nil means don't make magic-set goal for this proposition
|
|
||||||
(allowed-in-answer0 t)
|
|
||||||
(kbo-weight0 1)
|
|
||||||
(weight0 1)
|
|
||||||
(sort0 (top-sort))
|
|
||||||
(plist nil)) ;property list for more properties
|
|
||||||
|
|
||||||
(definline constant-number (const)
|
|
||||||
(funcall *standard-eql-numbering* :lookup const))
|
|
||||||
|
|
||||||
(defvar *constant-info-table*)
|
|
||||||
|
|
||||||
(defmacro constant-info0 (const)
|
|
||||||
`(gethash ,const *constant-info-table*))
|
|
||||||
|
|
||||||
(definline constant-info (const &optional (action 'error))
|
|
||||||
(or (constant-info0 const)
|
|
||||||
(init-constant-info const action)))
|
|
||||||
|
|
||||||
(defun init-constant-info (const action)
|
|
||||||
(when action
|
|
||||||
(can-be-constant-name const action))
|
|
||||||
(constant-number const) ;initialize it at first occurrence
|
|
||||||
(let ((info (make-constant-info)))
|
|
||||||
(setf (constant-info0 const) info)))
|
|
||||||
|
|
||||||
(defmacro define-constant-slot-accessor (name &key read-only)
|
|
||||||
(let ((constant-slot (intern (to-string :constant- name) :snark))
|
|
||||||
(constant-info-slot (intern (to-string :constant-info- name) :snark)))
|
|
||||||
`(progn
|
|
||||||
(#-(or allegro lispworks) definline #+(or allegro lispworks) defun ,constant-slot (const)
|
|
||||||
(,constant-info-slot (constant-info const)))
|
|
||||||
,@(unless read-only
|
|
||||||
(list
|
|
||||||
`(defun (setf ,constant-slot) (value const)
|
|
||||||
(setf (,constant-info-slot (constant-info const)) value)))))))
|
|
||||||
|
|
||||||
(define-constant-slot-accessor hash-code0 :read-only t)
|
|
||||||
(define-constant-slot-accessor boolean-valued-p0)
|
|
||||||
(define-constant-slot-accessor constructor0)
|
|
||||||
(define-constant-slot-accessor magic)
|
|
||||||
(define-constant-slot-accessor allowed-in-answer0)
|
|
||||||
(define-constant-slot-accessor kbo-weight0)
|
|
||||||
(define-constant-slot-accessor weight0)
|
|
||||||
(define-constant-slot-accessor sort0)
|
|
||||||
(define-constant-slot-accessor plist)
|
|
||||||
|
|
||||||
(define-plist-slot-accessor constant :locked0)
|
|
||||||
(define-plist-slot-accessor constant :documentation)
|
|
||||||
(define-plist-slot-accessor constant :author)
|
|
||||||
(define-plist-slot-accessor constant :source)
|
|
||||||
(define-plist-slot-accessor constant :complement) ;complement of the symbol P is the symbol ~P
|
|
||||||
(define-plist-slot-accessor constant :skolem-p)
|
|
||||||
(define-plist-slot-accessor constant :created-p)
|
|
||||||
(define-plist-slot-accessor constant :do-not-resolve)
|
|
||||||
|
|
||||||
(defvar *number-info-table*) ;number -> (sort)
|
|
||||||
(defvar *string-info-table*) ;string -> (sort canonical-string)
|
|
||||||
|
|
||||||
(defstruct (number-info
|
|
||||||
(:type list)
|
|
||||||
(:copier nil))
|
|
||||||
sort)
|
|
||||||
|
|
||||||
(defstruct (string-info
|
|
||||||
(:type list)
|
|
||||||
(:copier nil))
|
|
||||||
sort
|
|
||||||
(canonical nil :read-only t))
|
|
||||||
|
|
||||||
(defmacro number-info (number)
|
|
||||||
`(gethash ,number *number-info-table*))
|
|
||||||
|
|
||||||
(defmacro string-info (string)
|
|
||||||
`(gethash ,string *string-info-table*))
|
|
||||||
|
|
||||||
(defun number-canonical (x)
|
|
||||||
(cl:assert (numberp x))
|
|
||||||
(cond
|
|
||||||
((floatp x)
|
|
||||||
(rationalize x))
|
|
||||||
((and (complexp x) (float (realpart x)))
|
|
||||||
(complex (rationalize (realpart x)) (rationalize (imagpart x))))
|
|
||||||
(t
|
|
||||||
x)))
|
|
||||||
|
|
||||||
(defun declare-number (x)
|
|
||||||
(setf x (number-canonical x))
|
|
||||||
(or (number-info x)
|
|
||||||
(progn
|
|
||||||
(constant-number x) ;initialize it at first occurrence
|
|
||||||
(setf (number-info x) (make-number-info :sort (the-sort (number-sort-name x))))))
|
|
||||||
x)
|
|
||||||
|
|
||||||
(defun declare-string (x)
|
|
||||||
(cl:assert (stringp x))
|
|
||||||
;; canonicalize strings so that (implies (string= str1 str2) (eq (declare-string str1) (declare-string str2)))
|
|
||||||
(string-info-canonical
|
|
||||||
(or (string-info x)
|
|
||||||
(progn
|
|
||||||
(constant-number x) ;initialize it at first occurrence
|
|
||||||
(setf (string-info x) (make-string-info :sort (the-sort (declare-string-sort?)) :canonical x))))))
|
|
||||||
|
|
||||||
(definline builtin-constant-p (x)
|
|
||||||
(or (numberp x) (stringp x)))
|
|
||||||
|
|
||||||
(definline constant-builtin-p (const)
|
|
||||||
;; equivalent to but faster than builtin-constant-p for known constants (can-be-constant-name is true)
|
|
||||||
(not (symbolp const)))
|
|
||||||
|
|
||||||
(defun constant-hash-code (const)
|
|
||||||
(if (constant-builtin-p const) (+ 2 (mod (constant-number const) 1022)) (constant-hash-code0 const)))
|
|
||||||
|
|
||||||
(definline constant-boolean-valued-p (const)
|
|
||||||
(if (constant-builtin-p const) nil (constant-boolean-valued-p0 const)))
|
|
||||||
|
|
||||||
(definline constant-constructor (const)
|
|
||||||
(if (constant-builtin-p const) t (constant-constructor0 const)))
|
|
||||||
|
|
||||||
(definline constant-allowed-in-answer (const)
|
|
||||||
(if (constant-builtin-p const) t (constant-allowed-in-answer0 const)))
|
|
||||||
|
|
||||||
(definline constant-kbo-weight (const)
|
|
||||||
(if (constant-builtin-p const)
|
|
||||||
(let ((v (kbo-builtin-constant-weight?)))
|
|
||||||
(if (numberp v) v (funcall v const)))
|
|
||||||
(constant-kbo-weight0 const)))
|
|
||||||
|
|
||||||
(definline constant-weight (const)
|
|
||||||
(if (constant-builtin-p const)
|
|
||||||
(let ((v (builtin-constant-weight?)))
|
|
||||||
(if (numberp v) v (funcall v const)))
|
|
||||||
(constant-weight0 const)))
|
|
||||||
|
|
||||||
(defun constant-sort (const)
|
|
||||||
(cond
|
|
||||||
((numberp const)
|
|
||||||
(number-info-sort (number-info const)))
|
|
||||||
((stringp const)
|
|
||||||
(string-info-sort (string-info const)))
|
|
||||||
(t
|
|
||||||
(constant-sort0 const))))
|
|
||||||
|
|
||||||
(defun (setf constant-sort) (value const)
|
|
||||||
(cond
|
|
||||||
((numberp const)
|
|
||||||
(setf (number-info-sort (number-info const)) value))
|
|
||||||
((stringp const)
|
|
||||||
(setf (string-info-sort (string-info const)) value))
|
|
||||||
(t
|
|
||||||
(setf (constant-sort0 const) value))))
|
|
||||||
|
|
||||||
(definline constant-locked (const)
|
|
||||||
(if (constant-builtin-p const) t (constant-locked0 const)))
|
|
||||||
|
|
||||||
(definline constant-name (const)
|
|
||||||
(or (constant-boolean-valued-p const) const))
|
|
||||||
|
|
||||||
(defun constant-name-lessp (x y)
|
|
||||||
(cond
|
|
||||||
((complexp x)
|
|
||||||
(if (complexp y) (or (< (realpart x) (realpart y)) (and (= (realpart x) (realpart y)) (< (imagpart x) (imagpart y)))) t))
|
|
||||||
((complexp y)
|
|
||||||
nil)
|
|
||||||
((realp x)
|
|
||||||
(if (realp y) (< x y) t))
|
|
||||||
((realp y)
|
|
||||||
nil)
|
|
||||||
((stringp x)
|
|
||||||
(if (stringp y) (string< x y) t))
|
|
||||||
((stringp y)
|
|
||||||
nil)
|
|
||||||
(t
|
|
||||||
(string< x y))))
|
|
||||||
|
|
||||||
(defun initialize-constants ()
|
|
||||||
(setf *constant-info-table* (make-hash-table))
|
|
||||||
(setf *number-info-table* (make-hash-table))
|
|
||||||
(setf *string-info-table* (make-hash-table :test #'equal))
|
|
||||||
nil)
|
|
||||||
|
|
||||||
(defmacro set-slot-if-supplied (type slot)
|
|
||||||
(let ((slot-supplied (intern (to-string slot :-supplied) :snark))
|
|
||||||
(type-slot (intern (to-string type "-" slot) :snark)))
|
|
||||||
`(when ,slot-supplied
|
|
||||||
(setf (,type-slot symbol) ,slot))))
|
|
||||||
|
|
||||||
(defun declare-constant-symbol0 (symbol
|
|
||||||
&key
|
|
||||||
alias
|
|
||||||
((:sort sort0) nil)
|
|
||||||
((:locked locked0) nil)
|
|
||||||
(documentation nil documentation-supplied)
|
|
||||||
(author nil author-supplied)
|
|
||||||
(source nil source-supplied)
|
|
||||||
(complement nil complement-supplied)
|
|
||||||
(magic t magic-supplied)
|
|
||||||
(skolem-p nil skolem-p-supplied)
|
|
||||||
(created-p nil created-p-supplied)
|
|
||||||
((:constructor constructor0) nil constructor0-supplied)
|
|
||||||
((:allowed-in-answer allowed-in-answer0) nil allowed-in-answer0-supplied)
|
|
||||||
((:kbo-weight kbo-weight0) nil kbo-weight0-supplied)
|
|
||||||
((:weight weight0) nil weight0-supplied)
|
|
||||||
(do-not-resolve nil do-not-resolve-supplied)
|
|
||||||
)
|
|
||||||
;; doesn't do anything if no keywords are supplied
|
|
||||||
(when constructor0-supplied
|
|
||||||
(cl:assert (implies (constant-builtin-p symbol) constructor0) () "Builtin constant ~S cannot be a nonconstructor." symbol))
|
|
||||||
(when alias
|
|
||||||
(create-aliases-for-symbol symbol alias))
|
|
||||||
(when sort0
|
|
||||||
(declare-constant-sort symbol sort0))
|
|
||||||
(when locked0
|
|
||||||
(setf (constant-locked0 symbol) locked0)) ;stays locked
|
|
||||||
(set-slot-if-supplied constant documentation)
|
|
||||||
(set-slot-if-supplied constant author)
|
|
||||||
(set-slot-if-supplied constant source)
|
|
||||||
(set-slot-if-supplied constant complement)
|
|
||||||
(set-slot-if-supplied constant magic)
|
|
||||||
(set-slot-if-supplied constant skolem-p)
|
|
||||||
(set-slot-if-supplied constant created-p)
|
|
||||||
(set-slot-if-supplied constant constructor0)
|
|
||||||
(set-slot-if-supplied constant allowed-in-answer0)
|
|
||||||
(set-slot-if-supplied constant kbo-weight0)
|
|
||||||
(set-slot-if-supplied constant weight0)
|
|
||||||
(set-slot-if-supplied constant do-not-resolve)
|
|
||||||
symbol)
|
|
||||||
|
|
||||||
(defun changeable-keys-and-values0 (keys-and-values changeable)
|
|
||||||
(let ((keys-and-values1 nil) keys-and-values1-last
|
|
||||||
(keys-and-values2 nil) keys-and-values2-last)
|
|
||||||
(loop
|
|
||||||
(cond
|
|
||||||
((endp keys-and-values)
|
|
||||||
(return (values keys-and-values1 keys-and-values2)))
|
|
||||||
((member (first keys-and-values) changeable)
|
|
||||||
(collect (pop keys-and-values) keys-and-values1)
|
|
||||||
(collect (pop keys-and-values) keys-and-values1))
|
|
||||||
(t
|
|
||||||
(collect (pop keys-and-values) keys-and-values2)
|
|
||||||
(collect (pop keys-and-values) keys-and-values2))))))
|
|
||||||
|
|
||||||
(defun changeable-keys-and-values (symbol keys-and-values changeable)
|
|
||||||
(let (keys-and-values2)
|
|
||||||
(setf (values keys-and-values keys-and-values2) (changeable-keys-and-values0 keys-and-values changeable))
|
|
||||||
(when keys-and-values2
|
|
||||||
(warn "Ignoring declaration of locked symbol ~S with arguments~{ ~S~}." symbol keys-and-values2))
|
|
||||||
keys-and-values))
|
|
||||||
|
|
||||||
(defun declare-constant-symbol1 (symbol keys-and-values)
|
|
||||||
(cond
|
|
||||||
((null keys-and-values)
|
|
||||||
symbol)
|
|
||||||
(t
|
|
||||||
(apply 'declare-constant-symbol0
|
|
||||||
symbol
|
|
||||||
(cond
|
|
||||||
((and (constant-locked symbol) (eq none (getf keys-and-values :locked none)))
|
|
||||||
(changeable-keys-and-values
|
|
||||||
symbol
|
|
||||||
keys-and-values
|
|
||||||
(if (constant-builtin-p symbol) '(:alias :sort) (changeable-properties-of-locked-constant?))))
|
|
||||||
(t
|
|
||||||
keys-and-values))))))
|
|
||||||
|
|
||||||
(defun declare-constant (name &rest keys-and-values)
|
|
||||||
(declare (dynamic-extent keys-and-values))
|
|
||||||
(declare-constant-symbol1 (input-constant-symbol name) keys-and-values))
|
|
||||||
|
|
||||||
(defun declare-proposition (name &rest keys-and-values)
|
|
||||||
(declare (dynamic-extent keys-and-values))
|
|
||||||
(declare-constant-symbol1 (input-proposition-symbol name) keys-and-values))
|
|
||||||
|
|
||||||
;;; constants.lisp EOF
|
|
Binary file not shown.
|
@ -1,335 +0,0 @@
|
||||||
;;; -*- Mode: Lisp; Syntax: Common-Lisp; Package: snark -*-
|
|
||||||
;;; File: constraints.lisp
|
|
||||||
;;; The contents of this file are subject to the Mozilla Public License
|
|
||||||
;;; Version 1.1 (the "License"); you may not use this file except in
|
|
||||||
;;; compliance with the License. You may obtain a copy of the License at
|
|
||||||
;;; http://www.mozilla.org/MPL/
|
|
||||||
;;;
|
|
||||||
;;; Software distributed under the License is distributed on an "AS IS"
|
|
||||||
;;; basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the
|
|
||||||
;;; License for the specific language governing rights and limitations
|
|
||||||
;;; under the License.
|
|
||||||
;;;
|
|
||||||
;;; The Original Code is SNARK.
|
|
||||||
;;; The Initial Developer of the Original Code is SRI International.
|
|
||||||
;;; Portions created by the Initial Developer are Copyright (C) 1981-2010.
|
|
||||||
;;; All Rights Reserved.
|
|
||||||
;;;
|
|
||||||
;;; Contributor(s): Mark E. Stickel <stickel@ai.sri.com>.
|
|
||||||
|
|
||||||
(in-package :snark)
|
|
||||||
|
|
||||||
(declaim (special *processing-row*))
|
|
||||||
|
|
||||||
(defgeneric checkpoint-theory (theory)
|
|
||||||
;; create checkpoint
|
|
||||||
(:method (theory)
|
|
||||||
(error "No checkpoint method for theory ~S." theory)))
|
|
||||||
|
|
||||||
(defgeneric uncheckpoint-theory (theory)
|
|
||||||
;; eliminate checkpoint, keeping changes since then
|
|
||||||
(:method (theory)
|
|
||||||
(error "No uncheckpoint method for theory ~S." theory)))
|
|
||||||
|
|
||||||
(defgeneric restore-theory (theory)
|
|
||||||
;; undo changes since checkpoint, keeping checkpoint
|
|
||||||
(:method (theory)
|
|
||||||
(error "No restore method for theory ~S." theory)))
|
|
||||||
|
|
||||||
(defgeneric theory-closure (theory)
|
|
||||||
;; returns non-NIL value if theory is inconsistent
|
|
||||||
(:method (theory)
|
|
||||||
(error "No closure method for theory ~S." theory)))
|
|
||||||
|
|
||||||
(defgeneric theory-assert (atom theory)
|
|
||||||
(:method (atom theory)
|
|
||||||
(declare (ignorable atom))
|
|
||||||
(error "No assert method for theory ~S." theory)))
|
|
||||||
|
|
||||||
(defgeneric theory-deny (atom theory)
|
|
||||||
(:method (atom theory)
|
|
||||||
(declare (ignorable atom))
|
|
||||||
(error "No deny method for theory ~S." theory)))
|
|
||||||
|
|
||||||
(defgeneric theory-simplify (wff theory)
|
|
||||||
;; wff is disjunction of literals
|
|
||||||
(:method (wff theory)
|
|
||||||
(let ((row *processing-row*))
|
|
||||||
(cond
|
|
||||||
((or (eq true wff) (eq false wff))
|
|
||||||
wff)
|
|
||||||
((and row
|
|
||||||
(eq false (row-wff row))
|
|
||||||
(not (row-nonassertion-p row))
|
|
||||||
(eq theory (row-unit-constraint row))
|
|
||||||
(ground-p wff))
|
|
||||||
(mvlet (((values atom polarity) (literal-p wff)))
|
|
||||||
(if (eq :pos polarity)
|
|
||||||
(theory-assert2 atom theory)
|
|
||||||
(theory-deny2 atom theory)))
|
|
||||||
false)
|
|
||||||
(t
|
|
||||||
(checkpoint-theory theory)
|
|
||||||
(let ((wff* (prog->
|
|
||||||
(map-atoms-in-wff-and-compose-result wff ->* atom polarity)
|
|
||||||
(cond
|
|
||||||
((if (eq :pos polarity)
|
|
||||||
(theory-falsep atom theory)
|
|
||||||
(theory-truep atom theory))
|
|
||||||
;; (when row
|
|
||||||
;; (pushnew theory (row-rewrites-used row)))
|
|
||||||
(if (eq :pos polarity) false true))
|
|
||||||
((progn
|
|
||||||
(if (eq :pos polarity)
|
|
||||||
(theory-deny atom theory)
|
|
||||||
(theory-assert atom theory))
|
|
||||||
(theory-closure theory))
|
|
||||||
(restore-theory theory)
|
|
||||||
(uncheckpoint-theory theory)
|
|
||||||
(return-from theory-simplify false))
|
|
||||||
(t
|
|
||||||
atom)))))
|
|
||||||
(restore-theory theory)
|
|
||||||
(uncheckpoint-theory theory)
|
|
||||||
wff*)))))
|
|
||||||
(:method (wff (theory (eql 'assumption)))
|
|
||||||
(let ((row-wff (row-wff *processing-row*)))
|
|
||||||
(cond
|
|
||||||
((and (clause-p row-wff) (clause-p wff nil nil t))
|
|
||||||
(prog->
|
|
||||||
(map-atoms-in-wff-and-compose-result wff ->* atom polarity)
|
|
||||||
(or (prog->
|
|
||||||
(map-atoms-in-wff row-wff ->* atom2 polarity2)
|
|
||||||
(when (and (eq polarity polarity2) (equal-p atom atom2))
|
|
||||||
(return-from prog-> (if (eq :pos polarity) true false))))
|
|
||||||
atom)))
|
|
||||||
(t
|
|
||||||
wff)))))
|
|
||||||
|
|
||||||
(defgeneric theory-rewrite (wff theory)
|
|
||||||
(:method (wff theory)
|
|
||||||
(declare (ignorable theory))
|
|
||||||
(rewriter wff nil))
|
|
||||||
(:method (wff (theory (eql 'assumption)))
|
|
||||||
wff))
|
|
||||||
|
|
||||||
(defun theory-assert2 (atom theory)
|
|
||||||
(checkpoint-theory theory)
|
|
||||||
(theory-assert atom theory)
|
|
||||||
(when (theory-closure theory) ;inconsistent?
|
|
||||||
(cerror "Continue without asserting it."
|
|
||||||
"Asserting ~A leads to a contradiction."
|
|
||||||
atom)
|
|
||||||
(restore-theory theory))
|
|
||||||
(uncheckpoint-theory theory))
|
|
||||||
|
|
||||||
(defun theory-deny2 (atom theory)
|
|
||||||
(checkpoint-theory theory)
|
|
||||||
(theory-deny atom theory)
|
|
||||||
(when (theory-closure theory) ;inconsistent?
|
|
||||||
(cerror "Continue without denying it."
|
|
||||||
"Denying ~A leads to a contradiction."
|
|
||||||
atom)
|
|
||||||
(restore-theory theory))
|
|
||||||
(uncheckpoint-theory theory))
|
|
||||||
|
|
||||||
(defun theory-truep (atom theory)
|
|
||||||
(let (inconsistent)
|
|
||||||
(checkpoint-theory theory)
|
|
||||||
(theory-deny atom theory)
|
|
||||||
(setf inconsistent (theory-closure theory))
|
|
||||||
(restore-theory theory)
|
|
||||||
(uncheckpoint-theory theory)
|
|
||||||
inconsistent))
|
|
||||||
|
|
||||||
(defun theory-falsep (atom theory)
|
|
||||||
(let (inconsistent)
|
|
||||||
(checkpoint-theory theory)
|
|
||||||
(theory-assert atom theory)
|
|
||||||
(setf inconsistent (theory-closure theory))
|
|
||||||
(restore-theory theory)
|
|
||||||
(uncheckpoint-theory theory)
|
|
||||||
inconsistent))
|
|
||||||
|
|
||||||
(defun simplify-constraint-alist (alist)
|
|
||||||
(and alist
|
|
||||||
(let* ((x (first alist))
|
|
||||||
(x* (lcons (car x) (theory-simplify (cdr x) (car x)) x)))
|
|
||||||
(cond
|
|
||||||
((eq false (cdr x*))
|
|
||||||
(simplify-constraint-alist (rest alist)))
|
|
||||||
(t
|
|
||||||
(lcons x* (simplify-constraint-alist (rest alist)) alist))))))
|
|
||||||
|
|
||||||
(defun rewrite-constraint-alist (alist)
|
|
||||||
(and alist
|
|
||||||
(let* ((x (first alist))
|
|
||||||
(x* (lcons (car x) (theory-rewrite (cdr x) (car x)) x)))
|
|
||||||
(cond
|
|
||||||
((eq false (cdr x*))
|
|
||||||
(rewrite-constraint-alist (rest alist)))
|
|
||||||
(t
|
|
||||||
(lcons x* (rewrite-constraint-alist (rest alist)) alist))))))
|
|
||||||
|
|
||||||
(defun assumptive-constraint-theory-p (theory)
|
|
||||||
;; assumptive constraint theories can simply be assumed
|
|
||||||
;; they don't require row coverage
|
|
||||||
(eq 'assumption theory))
|
|
||||||
|
|
||||||
(defun row-constrained-p (row)
|
|
||||||
(dolist (x (row-constraints row) nil)
|
|
||||||
(unless (eq false (cdr x))
|
|
||||||
(return t))))
|
|
||||||
|
|
||||||
(defun row-constrained-p2 (row)
|
|
||||||
(dolist (x (row-constraints row) nil)
|
|
||||||
(unless (or (eq false (cdr x))
|
|
||||||
(assumptive-constraint-theory-p (car x)))
|
|
||||||
(return t))))
|
|
||||||
|
|
||||||
(defun row-unit-constraint (row)
|
|
||||||
(let ((v nil))
|
|
||||||
(dolist (x (row-constraints row))
|
|
||||||
(cond
|
|
||||||
((eq false (cdr x))
|
|
||||||
)
|
|
||||||
(v
|
|
||||||
(setf v nil)
|
|
||||||
(return))
|
|
||||||
((assumptive-constraint-theory-p (car x))
|
|
||||||
(return))
|
|
||||||
(t
|
|
||||||
(setf v x))))
|
|
||||||
(when v
|
|
||||||
(mvlet* (((list* theory wff) v)
|
|
||||||
((values atom polarity) (literal-p wff)))
|
|
||||||
(when atom
|
|
||||||
(values theory atom polarity))))))
|
|
||||||
|
|
||||||
(defun row-constraint-coverage (rows)
|
|
||||||
;; returns t if row-constraint coverage is complete
|
|
||||||
;; by doing matings search over constraint wffs
|
|
||||||
;; but with NO INSTANTIATION
|
|
||||||
;; cf. Bjorner, Stickel, Uribe CADE-14 paper
|
|
||||||
(let ((theories nil) (new-rows nil) new-rows-last)
|
|
||||||
(dolist (row rows)
|
|
||||||
(dolist (x (row-constraints row))
|
|
||||||
(mvlet (((list* theory wff) x))
|
|
||||||
(cl:assert (neq false wff))
|
|
||||||
(unless (or (eq true wff)
|
|
||||||
(member theory theories)
|
|
||||||
(assumptive-constraint-theory-p theory)
|
|
||||||
(theory-closure theory))
|
|
||||||
(checkpoint-theory theory)
|
|
||||||
(push theory theories)))))
|
|
||||||
(dolist (row rows)
|
|
||||||
(mvlet (((values theory atom polarity) (row-unit-constraint row)))
|
|
||||||
(cond
|
|
||||||
((and theory (member theory theories))
|
|
||||||
(if (eq :pos polarity)
|
|
||||||
(theory-assert atom theory)
|
|
||||||
(theory-deny atom theory)))
|
|
||||||
(t
|
|
||||||
(collect row new-rows)))))
|
|
||||||
(prog1
|
|
||||||
(dolist (theory theories t)
|
|
||||||
(unless (theory-closure theory)
|
|
||||||
(return (row-constraint-coverage* new-rows theories))))
|
|
||||||
(dolist (theory theories)
|
|
||||||
(restore-theory theory)
|
|
||||||
(uncheckpoint-theory theory)))))
|
|
||||||
|
|
||||||
(defun row-constraint-coverage* (rows theories)
|
|
||||||
(and rows
|
|
||||||
(dolist (x (row-constraints (first rows)) t) ;return t if all paths closed
|
|
||||||
(mvlet (((list* theory wff) x)) ;constraint wff is conjunction of literals
|
|
||||||
(unless (or (eq true wff)
|
|
||||||
(not (member theory theories))
|
|
||||||
(theory-closure theory))
|
|
||||||
(prog->
|
|
||||||
(map-atoms-in-wff wff ->* atom polarity)
|
|
||||||
(cond
|
|
||||||
((prog2
|
|
||||||
(checkpoint-theory theory)
|
|
||||||
(progn
|
|
||||||
(if (eq :pos polarity) ;trial value
|
|
||||||
(theory-assert atom theory)
|
|
||||||
(theory-deny atom theory))
|
|
||||||
(or (theory-closure theory) ;inconsistent now?
|
|
||||||
(row-constraint-coverage* (rest rows) theories))) ;all paths closed?
|
|
||||||
(restore-theory theory)
|
|
||||||
(uncheckpoint-theory theory))
|
|
||||||
#+ignore
|
|
||||||
(if (eq :pos polarity) ;assert negation and continue
|
|
||||||
(theory-deny atom theory)
|
|
||||||
(theory-assert atom theory)))
|
|
||||||
(t
|
|
||||||
(return-from row-constraint-coverage* nil))))))))) ;return nil if unclosed path
|
|
||||||
|
|
||||||
(defmethod checkpoint-theory ((theory (eql 'equality)))
|
|
||||||
nil)
|
|
||||||
|
|
||||||
(defmethod uncheckpoint-theory ((theory (eql 'equality)))
|
|
||||||
nil)
|
|
||||||
|
|
||||||
(defmethod restore-theory ((theory (eql 'equality)))
|
|
||||||
nil)
|
|
||||||
|
|
||||||
(defmethod theory-closure ((theory (eql 'equality)))
|
|
||||||
nil)
|
|
||||||
|
|
||||||
(defmethod theory-assert (atom (theory (eql 'equality)))
|
|
||||||
(declare (ignorable atom))
|
|
||||||
nil)
|
|
||||||
|
|
||||||
(defmethod theory-deny (atom (theory (eql 'equality)))
|
|
||||||
(declare (ignorable atom))
|
|
||||||
nil)
|
|
||||||
|
|
||||||
(defmethod theory-simplify (wff (theory (eql 'equality)))
|
|
||||||
wff)
|
|
||||||
|
|
||||||
(defmethod checkpoint-theory ((theory (eql 'test)))
|
|
||||||
nil)
|
|
||||||
|
|
||||||
(defmethod uncheckpoint-theory ((theory (eql 'test)))
|
|
||||||
nil)
|
|
||||||
|
|
||||||
(defmethod restore-theory ((theory (eql 'test)))
|
|
||||||
nil)
|
|
||||||
|
|
||||||
(defmethod theory-closure ((theory (eql 'test)))
|
|
||||||
nil)
|
|
||||||
|
|
||||||
(defmethod theory-assert (atom (theory (eql 'test)))
|
|
||||||
(declare (ignorable atom))
|
|
||||||
nil)
|
|
||||||
|
|
||||||
(defmethod theory-deny (atom (theory (eql 'test)))
|
|
||||||
(declare (ignorable atom))
|
|
||||||
nil)
|
|
||||||
|
|
||||||
(defmethod theory-simplify (wff (theory (eql 'test)))
|
|
||||||
wff)
|
|
||||||
|
|
||||||
(defun assumption-test1 ()
|
|
||||||
;; answer 1 with assumption (b 1)
|
|
||||||
;; answer 2 with assumption (a 2)
|
|
||||||
;; answer ?x with assumption (and (a ?x) (b ?x))
|
|
||||||
(initialize)
|
|
||||||
(use-resolution)
|
|
||||||
(use-subsumption-by-false)
|
|
||||||
(assert '(a 1))
|
|
||||||
(assert '(b 2))
|
|
||||||
(assert '(a ?x) :constraints '((assumption (a ?x))))
|
|
||||||
(assert '(b ?x) :constraints '((assumption (b ?x))))
|
|
||||||
(prove '(and (a ?x) (b ?x)) :answer '(values ?x)))
|
|
||||||
|
|
||||||
(defun assumption-test2 ()
|
|
||||||
(initialize)
|
|
||||||
(use-resolution)
|
|
||||||
(assert '(implies (bird ?x) (flies ?x)) :constraints '((assumption (normal-wrt-flies ?x))))
|
|
||||||
(assert '(bird tweety))
|
|
||||||
(prove '(flies tweety)))
|
|
||||||
|
|
||||||
;;; constraints.lisp EOF
|
|
Binary file not shown.
|
@ -1,90 +0,0 @@
|
||||||
;;; -*- Mode: Lisp; Syntax: Common-Lisp; Package: snark-lisp -*-
|
|
||||||
;;; File: counters.lisp
|
|
||||||
;;; The contents of this file are subject to the Mozilla Public License
|
|
||||||
;;; Version 1.1 (the "License"); you may not use this file except in
|
|
||||||
;;; compliance with the License. You may obtain a copy of the License at
|
|
||||||
;;; http://www.mozilla.org/MPL/
|
|
||||||
;;;
|
|
||||||
;;; Software distributed under the License is distributed on an "AS IS"
|
|
||||||
;;; basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the
|
|
||||||
;;; License for the specific language governing rights and limitations
|
|
||||||
;;; under the License.
|
|
||||||
;;;
|
|
||||||
;;; The Original Code is SNARK.
|
|
||||||
;;; The Initial Developer of the Original Code is SRI International.
|
|
||||||
;;; Portions created by the Initial Developer are Copyright (C) 1981-2010.
|
|
||||||
;;; All Rights Reserved.
|
|
||||||
;;;
|
|
||||||
;;; Contributor(s): Mark E. Stickel <stickel@ai.sri.com>.
|
|
||||||
|
|
||||||
(in-package :snark-lisp)
|
|
||||||
|
|
||||||
(defstruct (counter
|
|
||||||
(:constructor make-counter (&optional (increments 0)))
|
|
||||||
(:copier nil))
|
|
||||||
(increments 0 :type integer)
|
|
||||||
(decrements 0 :type integer)
|
|
||||||
(previous-peak-value 0 :type integer))
|
|
||||||
|
|
||||||
(defun increment-counter (counter &optional (n 1))
|
|
||||||
(declare (type integer n))
|
|
||||||
;;(cl:assert (<= 0 n))
|
|
||||||
(incf (counter-increments counter) n)
|
|
||||||
nil)
|
|
||||||
|
|
||||||
(defun decrement-counter (counter &optional (n 1))
|
|
||||||
(declare (type integer n))
|
|
||||||
;;(cl:assert (<= 0 n))
|
|
||||||
(let* ((d (counter-decrements counter))
|
|
||||||
(v (- (counter-increments counter) d)))
|
|
||||||
(when (> v (counter-previous-peak-value counter))
|
|
||||||
(setf (counter-previous-peak-value counter) v))
|
|
||||||
(setf (counter-decrements counter) (+ d n))
|
|
||||||
nil))
|
|
||||||
|
|
||||||
(defun counter-value (counter)
|
|
||||||
(- (counter-increments counter) (counter-decrements counter)))
|
|
||||||
|
|
||||||
(defun counter-values (counter)
|
|
||||||
;; returns 4 values: current value, peak value, #increments, #decrements
|
|
||||||
(let* ((i (counter-increments counter))
|
|
||||||
(d (counter-decrements counter))
|
|
||||||
(v (- i d)))
|
|
||||||
(values v (max v (counter-previous-peak-value counter)) i d)))
|
|
||||||
|
|
||||||
(definline show-count-p (n)
|
|
||||||
(dolist (v '(1000000 100000 10000 1000 100 10) t)
|
|
||||||
(when (>= n v)
|
|
||||||
(return (eql 0 (rem n v))))))
|
|
||||||
|
|
||||||
(defun show-count (n)
|
|
||||||
(princ #\Space)
|
|
||||||
(let (q r)
|
|
||||||
(cond
|
|
||||||
((eql 0 n)
|
|
||||||
(princ 0))
|
|
||||||
((progn (setf (values q r) (truncate n 1000000)) (eql 0 r))
|
|
||||||
(princ q) (princ #\M))
|
|
||||||
((progn (setf (values q r) (truncate n 1000)) (eql 0 r))
|
|
||||||
(princ q) (princ #\K))
|
|
||||||
(t
|
|
||||||
(princ n))))
|
|
||||||
(princ #\Space)
|
|
||||||
(force-output)
|
|
||||||
n)
|
|
||||||
|
|
||||||
(defun show-count0 (n)
|
|
||||||
(if (and (neql 0 n) (show-count-p n)) n (show-count n)))
|
|
||||||
|
|
||||||
(defun show-count1 (n)
|
|
||||||
(if (show-count-p n) (show-count n) n))
|
|
||||||
|
|
||||||
(defmacro princf (place &optional (delta 1))
|
|
||||||
;; increment counter and maybe print it
|
|
||||||
;; if delta is 0, print the counter unless the previous increment did
|
|
||||||
(cl:assert (member delta '(0 1)))
|
|
||||||
(if (eql 0 delta)
|
|
||||||
`(show-count0 ,place)
|
|
||||||
`(show-count1 (incf ,place))))
|
|
||||||
|
|
||||||
;;; counters.lisp EOF
|
|
Binary file not shown.
|
@ -1,347 +0,0 @@
|
||||||
;;; -*- Mode: Lisp; Syntax: Common-Lisp; Package: snark -*-
|
|
||||||
;;; File: date-reasoning2.lisp
|
|
||||||
;;; The contents of this file are subject to the Mozilla Public License
|
|
||||||
;;; Version 1.1 (the "License"); you may not use this file except in
|
|
||||||
;;; compliance with the License. You may obtain a copy of the License at
|
|
||||||
;;; http://www.mozilla.org/MPL/
|
|
||||||
;;;
|
|
||||||
;;; Software distributed under the License is distributed on an "AS IS"
|
|
||||||
;;; basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the
|
|
||||||
;;; License for the specific language governing rights and limitations
|
|
||||||
;;; under the License.
|
|
||||||
;;;
|
|
||||||
;;; The Original Code is SNARK.
|
|
||||||
;;; The Initial Developer of the Original Code is SRI International.
|
|
||||||
;;; Portions created by the Initial Developer are Copyright (C) 1981-2010.
|
|
||||||
;;; All Rights Reserved.
|
|
||||||
;;;
|
|
||||||
;;; Contributor(s): Mark E. Stickel <stickel@ai.sri.com>.
|
|
||||||
|
|
||||||
(in-package :snark)
|
|
||||||
|
|
||||||
;;; $$date-point and $$date-interval are external (solely for user convenience) function symbols
|
|
||||||
;;; for date points and intervals; they are replaced by $$utime-point and $$utime-interval when
|
|
||||||
;;; formulas are input
|
|
||||||
;;;
|
|
||||||
;;; $$utime-point and $$utime-interval are internal function symbols for dates
|
|
||||||
;;; they use Lisp universal time representation (which counts seconds since 1900-01-01T00:00:00)
|
|
||||||
;;;
|
|
||||||
;;; $$date-point and $$date-interval use 1 to 6 integer arguments
|
|
||||||
;;; year, month, day, hour, minute, second
|
|
||||||
;;; to specify dates
|
|
||||||
;;;
|
|
||||||
;;; examples of SNARK dates and their translations:
|
|
||||||
;;; ($$date-point 2002 4 1 16 27 20) -> ($$utime-point 3226667240)
|
|
||||||
;;; ($$date-interval 2002 4 1 16 34) -> ($$utime-interval 3226667640 3226667700)
|
|
||||||
;;; ($$date-interval 2002 4 1 16 34 :until 2002 4 1 16 35) -> ($$utime-interval 3226667640 3226667700)
|
|
||||||
;;; ($$date-interval 2002 4 1 16 34 :until 2002 4 1 17) -> ($$utime-interval 3226667640 3226669200)
|
|
||||||
;;;
|
|
||||||
;;; 20071215: avoid use of $$date-interval (and $$utime-interval)
|
|
||||||
;;; reasoning is more complete and effective if just $$date-point (and $$utime-point) are used
|
|
||||||
|
|
||||||
(defvar *date-point*)
|
|
||||||
(defvar *utime-point*)
|
|
||||||
(defvar *date-interval*)
|
|
||||||
(defvar *utime-interval*)
|
|
||||||
|
|
||||||
(defun declare-code-for-dates ()
|
|
||||||
;; declare symbols without some properties here
|
|
||||||
;; defer full definition until declare-time-relations is called
|
|
||||||
(setf *date-point* (declare-function1 '$$date-point :any :macro t :input-code 'input-date-point))
|
|
||||||
(setf *utime-point* (declare-function
|
|
||||||
'$$utime-point 1
|
|
||||||
:constructor t
|
|
||||||
;; :index-type :hash-but-dont-index
|
|
||||||
:to-lisp-code 'utime-point-term-to-lisp))
|
|
||||||
(setf *date-interval* (declare-function1 '$$date-interval :any :macro t :input-code 'input-date-interval))
|
|
||||||
(setf *utime-interval* (declare-function
|
|
||||||
'$$utime-interval 2
|
|
||||||
:constructor t
|
|
||||||
;; :index-type :hash-but-dont-index
|
|
||||||
:to-lisp-code 'utime-interval-term-to-lisp))
|
|
||||||
nil)
|
|
||||||
|
|
||||||
(defun can-be-date-p (list &optional action)
|
|
||||||
;; a proper date is a list of 1 to 6 integers with appropriate values
|
|
||||||
;; interpreted as year, month, day, hour, minute, and second
|
|
||||||
(or (let* ((list list)
|
|
||||||
(year (pop list)))
|
|
||||||
(and (integerp year)
|
|
||||||
(<= 1900 year)
|
|
||||||
(implies
|
|
||||||
list
|
|
||||||
(let ((month (pop list)))
|
|
||||||
(and (integerp month)
|
|
||||||
(<= 1 month 12)
|
|
||||||
(implies
|
|
||||||
list
|
|
||||||
(let ((day (pop list)))
|
|
||||||
(and (integerp day)
|
|
||||||
(<= 1 day (days-per-month month year))
|
|
||||||
(implies
|
|
||||||
list
|
|
||||||
(let ((hour (pop list)))
|
|
||||||
(and (integerp hour)
|
|
||||||
(<= 0 hour 23)
|
|
||||||
(implies
|
|
||||||
list
|
|
||||||
(let ((minute (pop list)))
|
|
||||||
(and (integerp minute)
|
|
||||||
(<= 0 minute 59)
|
|
||||||
(implies
|
|
||||||
list
|
|
||||||
(let ((second (pop list)))
|
|
||||||
(and (integerp second)
|
|
||||||
(<= 0 second 59) ;no leap seconds!
|
|
||||||
(null list))))))))))))))))))
|
|
||||||
(and action (funcall action "~A cannot be a date." list))))
|
|
||||||
|
|
||||||
(defun encode-universal-time-point (year &optional month day hour minute second)
|
|
||||||
(can-be-date-p (list year (or month 1) (or day 1) (or hour 0) (or minute 0) (or second 0)) 'error)
|
|
||||||
(encode-universal-time
|
|
||||||
(or second 0)
|
|
||||||
(or minute 0)
|
|
||||||
(or hour 0)
|
|
||||||
(or day 1)
|
|
||||||
(or month 1)
|
|
||||||
year
|
|
||||||
0))
|
|
||||||
|
|
||||||
(defun decode-universal-time-point (universal-time-point)
|
|
||||||
(mvlet (((values second minute hour day month year)
|
|
||||||
(decode-universal-time universal-time-point 0)))
|
|
||||||
(cond
|
|
||||||
((/= 0 second)
|
|
||||||
(list year month day hour minute second))
|
|
||||||
((/= 0 minute)
|
|
||||||
(list year month day hour minute))
|
|
||||||
((/= 0 hour)
|
|
||||||
(list year month day hour))
|
|
||||||
((/= 1 day)
|
|
||||||
(list year month day))
|
|
||||||
((/= 1 month)
|
|
||||||
(list year month))
|
|
||||||
(t
|
|
||||||
(list year)))))
|
|
||||||
|
|
||||||
(defun encode-universal-time-interval (year &optional month day hour minute second)
|
|
||||||
(let ((v (encode-universal-time-point year month day hour minute second)))
|
|
||||||
(list v
|
|
||||||
(+ v (or (and second 1) ;1 second long interval
|
|
||||||
(and minute 60) ;1 minute long interval
|
|
||||||
(and hour 3600) ;1 hour long interval
|
|
||||||
(and day 86400) ;1 day long interval
|
|
||||||
(and month (* (days-per-month month year) 86400)) ;1 month long interval
|
|
||||||
(* (if (leap-year-p year) 366 365) 86400)))))) ;1 year long interval
|
|
||||||
|
|
||||||
(defun decode-universal-time-interval (universal-time-interval)
|
|
||||||
(mvlet (((list start finish) universal-time-interval))
|
|
||||||
(values (decode-universal-time-point start) (decode-universal-time-point finish))))
|
|
||||||
|
|
||||||
(defun pp-compare-universal-times (point1 point2)
|
|
||||||
(cond
|
|
||||||
((< point1 point2)
|
|
||||||
'p<p)
|
|
||||||
((> point1 point2)
|
|
||||||
'p>p)
|
|
||||||
(t
|
|
||||||
'p=p)))
|
|
||||||
|
|
||||||
(defun ii-compare-universal-times (interval1 interval2)
|
|
||||||
(mvlet (((list start1 finish1) interval1)
|
|
||||||
((list start2 finish2) interval2))
|
|
||||||
(cond
|
|
||||||
((= start1 start2)
|
|
||||||
(if (< finish1 finish2) 's (if (> finish1 finish2) 'si '=)))
|
|
||||||
((= finish1 finish2)
|
|
||||||
(if (> start1 start2) 'f 'fi))
|
|
||||||
((<= finish1 start2)
|
|
||||||
(if (= finish1 start2) 'm '<))
|
|
||||||
((>= start1 finish2)
|
|
||||||
(if (= start1 finish2) 'mi '>))
|
|
||||||
((< start1 start2)
|
|
||||||
(if (> finish1 finish2) 'di 'o))
|
|
||||||
(t
|
|
||||||
(if (< finish1 finish2) 'd 'oi)))))
|
|
||||||
|
|
||||||
(defun pi-compare-universal-times (point interval)
|
|
||||||
(mvlet (((list start finish) interval))
|
|
||||||
(cond
|
|
||||||
((<= point start)
|
|
||||||
(if (= point start) 'p_s_i 'p<i))
|
|
||||||
((>= point finish)
|
|
||||||
(if (= point finish) 'p_f_i 'p>i))
|
|
||||||
(t
|
|
||||||
'p_d_i))))
|
|
||||||
|
|
||||||
(defun declare-date-functions (&key intervals points)
|
|
||||||
(when points
|
|
||||||
(declare-function1 '$$utime-point 1 :sort (list (time-point-sort-name?))))
|
|
||||||
(when intervals
|
|
||||||
(declare-function1 '$$utime-interval 2 :sort (list (time-interval-sort-name?))))
|
|
||||||
(when points
|
|
||||||
(declare-relation1 '$$time-pp 3 :locked nil :rewrite-code 'time-pp-atom-rewriter-for-dates)
|
|
||||||
(declare-utime-pp-composition))
|
|
||||||
(when intervals
|
|
||||||
(declare-relation1 '$$time-ii 3 :locked nil :rewrite-code 'time-ii-atom-rewriter-for-dates))
|
|
||||||
(when (and points intervals)
|
|
||||||
(declare-relation1 '$$time-pi 3 :locked nil :rewrite-code 'time-pi-atom-rewriter-for-dates)
|
|
||||||
(declare-utime-pi-composition))
|
|
||||||
nil)
|
|
||||||
|
|
||||||
(defun input-date-point (head args polarity)
|
|
||||||
(declare (ignore head polarity))
|
|
||||||
(make-compound *utime-point* (declare-constant (apply 'encode-universal-time-point args))))
|
|
||||||
|
|
||||||
(defun input-date-interval (head args polarity)
|
|
||||||
(declare (ignore head polarity))
|
|
||||||
(let (v start finish)
|
|
||||||
(cond
|
|
||||||
((setf v (member :until args))
|
|
||||||
(setf start (apply 'encode-universal-time-point (ldiff args v)))
|
|
||||||
(setf finish (apply 'encode-universal-time-point (rest v)))
|
|
||||||
(cl:assert (< start finish)))
|
|
||||||
(t
|
|
||||||
(setf v (apply 'encode-universal-time-interval args))
|
|
||||||
(setf start (first v))
|
|
||||||
(setf finish (second v))))
|
|
||||||
(declare-constant start)
|
|
||||||
(declare-constant finish)
|
|
||||||
(make-compound *utime-interval* start finish)))
|
|
||||||
|
|
||||||
(defun utime-point-term-to-lisp (head args subst)
|
|
||||||
(declare (ignore head))
|
|
||||||
(or (let ((arg1 (first args)))
|
|
||||||
(and (dereference arg1 subst :if-constant (integerp arg1))
|
|
||||||
(cons (function-name *date-point*)
|
|
||||||
(decode-universal-time-point arg1))))
|
|
||||||
none))
|
|
||||||
|
|
||||||
(defun utime-interval-term-to-lisp (head args subst)
|
|
||||||
(declare (ignore head))
|
|
||||||
(or (let ((arg1 (first args))
|
|
||||||
(arg2 (second args)))
|
|
||||||
(and (dereference arg1 subst :if-constant (integerp arg1))
|
|
||||||
(dereference arg2 subst :if-constant (integerp arg2))
|
|
||||||
(cons (function-name *date-interval*)
|
|
||||||
(append (decode-universal-time-point arg1)
|
|
||||||
(cons :until (decode-universal-time-point arg2))))))
|
|
||||||
none))
|
|
||||||
|
|
||||||
(defun utime-point-term-p (term subst)
|
|
||||||
(dereference
|
|
||||||
term subst
|
|
||||||
:if-compound-appl (and (eq *utime-point* (heada term))
|
|
||||||
(let* ((args (argsa term))
|
|
||||||
(arg1 (first args)))
|
|
||||||
(and (dereference arg1 subst :if-constant (integerp arg1))
|
|
||||||
arg1)))))
|
|
||||||
|
|
||||||
(defun utime-interval-term-p (term subst)
|
|
||||||
(dereference
|
|
||||||
term subst
|
|
||||||
:if-compound-appl (and (eq *utime-interval* (heada term))
|
|
||||||
(let* ((args (argsa term))
|
|
||||||
(arg1 (first args))
|
|
||||||
(arg2 (second args)))
|
|
||||||
(and (dereference arg1 subst :if-constant (integerp arg1))
|
|
||||||
(dereference arg2 subst :if-constant (integerp arg2))
|
|
||||||
(if (and (eql arg1 (first args))
|
|
||||||
(eql arg2 (second args)))
|
|
||||||
args
|
|
||||||
(list arg1 arg2)))))))
|
|
||||||
|
|
||||||
(defun time-ii-atom-rewriter-for-dates (term subst)
|
|
||||||
(let ((args (args term)) m n v)
|
|
||||||
(cond
|
|
||||||
((and (setf m (utime-interval-term-p (first args) subst))
|
|
||||||
(setf n (utime-interval-term-p (second args) subst))
|
|
||||||
(progn (setf v (third args)) (dereference v subst :if-compound-cons t)))
|
|
||||||
(setf v (nth (jepd-relation-code (ii-compare-universal-times m n) $time-ii-relation-code) v))
|
|
||||||
(if (dereference v subst :if-variable t) false true))
|
|
||||||
(t
|
|
||||||
none))))
|
|
||||||
|
|
||||||
(defun time-pp-atom-rewriter-for-dates (term subst)
|
|
||||||
(let ((args (args term)) m n v)
|
|
||||||
(cond
|
|
||||||
((and (setf m (utime-point-term-p (first args) subst))
|
|
||||||
(setf n (utime-point-term-p (second args) subst))
|
|
||||||
(progn (setf v (third args)) (dereference v subst :if-compound-cons t)))
|
|
||||||
(setf v (nth (jepd-relation-code (pp-compare-universal-times m n) $time-pp-relation-code) v))
|
|
||||||
(if (dereference v subst :if-variable t) false true))
|
|
||||||
(t
|
|
||||||
none))))
|
|
||||||
|
|
||||||
(defun time-pi-atom-rewriter-for-dates (term subst)
|
|
||||||
(let ((args (args term)) m n v)
|
|
||||||
(cond
|
|
||||||
((and (setf m (utime-point-term-p (first args) subst))
|
|
||||||
(setf n (utime-interval-term-p (second args) subst))
|
|
||||||
(progn (setf v (third args)) (dereference v subst :if-compound-cons t)))
|
|
||||||
(setf v (nth (jepd-relation-code (pi-compare-universal-times m n) $time-pi-relation-code) v))
|
|
||||||
(if (dereference v subst :if-variable t) false true))
|
|
||||||
(t
|
|
||||||
none))))
|
|
||||||
|
|
||||||
(defun declare-utime-pp-composition ()
|
|
||||||
;; use relations between x&z and z&y to constrain relation between x&y where x and z are utimes and y is a point
|
|
||||||
(declare-relation1
|
|
||||||
'$$utime-pp-composition
|
|
||||||
5
|
|
||||||
:rewrite-code
|
|
||||||
(list
|
|
||||||
(lambda (atom subst)
|
|
||||||
(let ((args (args atom)) m n)
|
|
||||||
(or (and (setf m (utime-point-term-p (third args) subst))
|
|
||||||
(setf n (utime-point-term-p (fifth args) subst))
|
|
||||||
(if (/= m n)
|
|
||||||
(make-compound
|
|
||||||
(input-relation-symbol '$$time-pp-composition 5)
|
|
||||||
(if (< m n)
|
|
||||||
(list 1 (make-and-freeze-variable) (make-and-freeze-variable))
|
|
||||||
(list (make-and-freeze-variable) (make-and-freeze-variable) 1))
|
|
||||||
(second (args atom))
|
|
||||||
(third (args atom))
|
|
||||||
(fifth (args atom))
|
|
||||||
(fourth (args atom)))
|
|
||||||
true))
|
|
||||||
none)))))
|
|
||||||
(assert `(forall (?x (?y :sort ,(time-point-sort-name?)) ?z ?l1 ?l2)
|
|
||||||
(implies (and ($$time-pp ($$utime-point ?x) ?y ?l1)
|
|
||||||
($$time-pp ($$utime-point ?z) ?y ?l2))
|
|
||||||
($$utime-pp-composition ?l1 ?l2 ($$utime-point ?x) ?y ($$utime-point ?z))))
|
|
||||||
:name :$$utime-pp-composition
|
|
||||||
:supported nil))
|
|
||||||
|
|
||||||
(defun declare-utime-pi-composition ()
|
|
||||||
;; use relations between x&z and z&y to constrain relation between x&y where x and z are utimes and y is an interval
|
|
||||||
(declare-relation1
|
|
||||||
'$$utime-pi-composition
|
|
||||||
5
|
|
||||||
:rewrite-code
|
|
||||||
(list
|
|
||||||
(lambda (atom subst)
|
|
||||||
(let ((args (args atom)) m n)
|
|
||||||
(or (and (setf m (utime-point-term-p (third args) subst))
|
|
||||||
(setf n (utime-point-term-p (fifth args) subst))
|
|
||||||
(if (/= m n)
|
|
||||||
(make-compound
|
|
||||||
(input-relation-symbol '$$time-pi-pp-composition 5)
|
|
||||||
(if (< m n)
|
|
||||||
(list 1 (make-and-freeze-variable) (make-and-freeze-variable))
|
|
||||||
(list (make-and-freeze-variable) (make-and-freeze-variable) 1))
|
|
||||||
(second (args atom))
|
|
||||||
(third (args atom))
|
|
||||||
(fifth (args atom))
|
|
||||||
(fourth (args atom)))
|
|
||||||
true))
|
|
||||||
none)))))
|
|
||||||
(assert `(forall (?x (?y :sort ,(time-interval-sort-name?)) ?z ?l1 ?l2)
|
|
||||||
(implies (and ($$time-pi ($$utime-point ?x) ?y ?l1)
|
|
||||||
($$time-pi ($$utime-point ?z) ?y ?l2))
|
|
||||||
($$utime-pi-composition ?l1 ?l2 ($$utime-point ?x) ?y ($$utime-point ?z))))
|
|
||||||
:name :$$utime-pi-composition
|
|
||||||
:supported nil))
|
|
||||||
|
|
||||||
;;; date-reasoning2.lisp EOF
|
|
Binary file not shown.
File diff suppressed because it is too large
Load diff
|
@ -1,38 +0,0 @@
|
||||||
;;; -*- Mode: Lisp; Syntax: Common-Lisp; Package: common-lisp-user -*-
|
|
||||||
;;; File: deque-system.lisp
|
|
||||||
;;; The contents of this file are subject to the Mozilla Public License
|
|
||||||
;;; Version 1.1 (the "License"); you may not use this file except in
|
|
||||||
;;; compliance with the License. You may obtain a copy of the License at
|
|
||||||
;;; http://www.mozilla.org/MPL/
|
|
||||||
;;;
|
|
||||||
;;; Software distributed under the License is distributed on an "AS IS"
|
|
||||||
;;; basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the
|
|
||||||
;;; License for the specific language governing rights and limitations
|
|
||||||
;;; under the License.
|
|
||||||
;;;
|
|
||||||
;;; The Original Code is SNARK.
|
|
||||||
;;; The Initial Developer of the Original Code is SRI International.
|
|
||||||
;;; Portions created by the Initial Developer are Copyright (C) 1981-2012.
|
|
||||||
;;; All Rights Reserved.
|
|
||||||
;;;
|
|
||||||
;;; Contributor(s): Mark E. Stickel <stickel@ai.sri.com>.
|
|
||||||
|
|
||||||
(in-package :common-lisp-user)
|
|
||||||
|
|
||||||
(defpackage :snark-deque
|
|
||||||
(:use :common-lisp :snark-lisp)
|
|
||||||
(:export
|
|
||||||
#:make-deque
|
|
||||||
#:deque?
|
|
||||||
#:deque-empty?
|
|
||||||
#:deque-first #:deque-rest #:deque-pop-first #:deque-add-first #:deque-push-first
|
|
||||||
#:deque-last #:deque-butlast #:deque-pop-last #:deque-add-last #:deque-push-last
|
|
||||||
#:deque-length
|
|
||||||
#:deque-delete
|
|
||||||
#:deque-delete-if
|
|
||||||
#:mapnconc-deque
|
|
||||||
))
|
|
||||||
|
|
||||||
(loads "deque2")
|
|
||||||
|
|
||||||
;;; deque-system.lisp EOF
|
|
Binary file not shown.
|
@ -1,228 +0,0 @@
|
||||||
;;; -*- Mode: Lisp; Syntax: Common-Lisp; Package: snark-deque -*-
|
|
||||||
;;; File: deque2.lisp
|
|
||||||
;;; The contents of this file are subject to the Mozilla Public License
|
|
||||||
;;; Version 1.1 (the "License"); you may not use this file except in
|
|
||||||
;;; compliance with the License. You may obtain a copy of the License at
|
|
||||||
;;; http://www.mozilla.org/MPL/
|
|
||||||
;;;
|
|
||||||
;;; Software distributed under the License is distributed on an "AS IS"
|
|
||||||
;;; basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the
|
|
||||||
;;; License for the specific language governing rights and limitations
|
|
||||||
;;; under the License.
|
|
||||||
;;;
|
|
||||||
;;; The Original Code is SNARK.
|
|
||||||
;;; The Initial Developer of the Original Code is SRI International.
|
|
||||||
;;; Portions created by the Initial Developer are Copyright (C) 1981-2012.
|
|
||||||
;;; All Rights Reserved.
|
|
||||||
;;;
|
|
||||||
;;; Contributor(s): Mark E. Stickel <stickel@ai.sri.com>.
|
|
||||||
|
|
||||||
(in-package :snark-deque)
|
|
||||||
|
|
||||||
(defstruct (deque
|
|
||||||
(:predicate deque?))
|
|
||||||
(front nil :type list)
|
|
||||||
(last-of-front nil)
|
|
||||||
(rear nil :type list)
|
|
||||||
(last-of-rear nil))
|
|
||||||
|
|
||||||
(defun deque-empty? (deque)
|
|
||||||
(and (null (deque-front deque)) (null (deque-rear deque))))
|
|
||||||
|
|
||||||
(defun deque-first (deque)
|
|
||||||
;; returns first item in deque, nil if deque is empty
|
|
||||||
(let ((front (deque-front deque)))
|
|
||||||
(if front (first front) (deque-last-of-rear deque))))
|
|
||||||
|
|
||||||
(defun deque-last (deque)
|
|
||||||
;; returns last item in deque, nil if deque is empty
|
|
||||||
(let ((rear (deque-rear deque)))
|
|
||||||
(if rear (first rear) (deque-last-of-front deque))))
|
|
||||||
|
|
||||||
(defun deque-rest (deque)
|
|
||||||
;; returns new deque with first item removed, deque if it is empty
|
|
||||||
(let ((front (deque-front deque))
|
|
||||||
(rear (deque-rear deque)))
|
|
||||||
(cond
|
|
||||||
(front
|
|
||||||
(let ((front* (rest front)))
|
|
||||||
(make-deque
|
|
||||||
:front front*
|
|
||||||
:last-of-front (if front* (deque-last-of-front deque) nil)
|
|
||||||
:rear rear
|
|
||||||
:last-of-rear (deque-last-of-rear deque))))
|
|
||||||
(rear
|
|
||||||
(let ((front* (rest (reverse rear))))
|
|
||||||
(make-deque
|
|
||||||
:front front*
|
|
||||||
:last-of-front (if front* (first rear) nil)
|
|
||||||
:rear nil
|
|
||||||
:last-of-rear nil)))
|
|
||||||
(t
|
|
||||||
deque))))
|
|
||||||
|
|
||||||
(defun deque-butlast (deque)
|
|
||||||
;; returns new deque with last item removed, deque if it is empty
|
|
||||||
(let ((front (deque-front deque))
|
|
||||||
(rear (deque-rear deque)))
|
|
||||||
(cond
|
|
||||||
(rear
|
|
||||||
(let ((rear* (rest rear)))
|
|
||||||
(make-deque
|
|
||||||
:rear rear*
|
|
||||||
:last-of-rear (if rear* (deque-last-of-rear deque) nil)
|
|
||||||
:front front
|
|
||||||
:last-of-front (deque-last-of-front deque))))
|
|
||||||
(front
|
|
||||||
(let ((rear* (rest (reverse front))))
|
|
||||||
(make-deque
|
|
||||||
:rear rear*
|
|
||||||
:last-of-rear (if rear* (first front) nil)
|
|
||||||
:front nil
|
|
||||||
:last-of-front nil)))
|
|
||||||
(t
|
|
||||||
deque))))
|
|
||||||
|
|
||||||
(defun deque-pop-first (deque)
|
|
||||||
;; like deque-rest, but return first item and destructively remove it from deque
|
|
||||||
(let ((front (deque-front deque))
|
|
||||||
(rear (deque-rear deque)))
|
|
||||||
(cond
|
|
||||||
(front
|
|
||||||
(let ((front* (rest front)))
|
|
||||||
(setf (deque-front deque) front*)
|
|
||||||
(when (null front*)
|
|
||||||
(setf (deque-last-of-front deque) nil))
|
|
||||||
(first front)))
|
|
||||||
(rear
|
|
||||||
(let ((item (deque-last-of-rear deque))
|
|
||||||
(front* (rest (reverse rear))))
|
|
||||||
(setf (deque-front deque) front*)
|
|
||||||
(setf (deque-last-of-front deque) (if front* (first rear) nil))
|
|
||||||
(setf (deque-rear deque) nil)
|
|
||||||
(setf (deque-last-of-rear deque) nil)
|
|
||||||
item))
|
|
||||||
(t
|
|
||||||
nil))))
|
|
||||||
|
|
||||||
(defun deque-pop-last (deque)
|
|
||||||
;; like deque-butlast, but return last item and destructively remove it from deque
|
|
||||||
(let ((front (deque-front deque))
|
|
||||||
(rear (deque-rear deque)))
|
|
||||||
(cond
|
|
||||||
(rear
|
|
||||||
(let ((rear* (rest rear)))
|
|
||||||
(setf (deque-rear deque) rear*)
|
|
||||||
(when (null rear*)
|
|
||||||
(setf (deque-last-of-rear deque) nil))
|
|
||||||
(first rear)))
|
|
||||||
(front
|
|
||||||
(let ((item (deque-last-of-front deque))
|
|
||||||
(rear* (rest (reverse front))))
|
|
||||||
(setf (deque-rear deque) rear*)
|
|
||||||
(setf (deque-last-of-rear deque) (if rear* (first front) nil))
|
|
||||||
(setf (deque-front deque) nil)
|
|
||||||
(setf (deque-last-of-front deque) nil)
|
|
||||||
item))
|
|
||||||
(t
|
|
||||||
nil))))
|
|
||||||
|
|
||||||
(defun deque-add-first (deque item)
|
|
||||||
;; returns new deque with new first item added
|
|
||||||
(let ((front (deque-front deque)))
|
|
||||||
(make-deque
|
|
||||||
:front (cons item front)
|
|
||||||
:last-of-front (if front (deque-last-of-front deque) item)
|
|
||||||
:rear (deque-rear deque)
|
|
||||||
:last-of-rear (deque-last-of-rear deque))))
|
|
||||||
|
|
||||||
(defun deque-add-last (deque item)
|
|
||||||
;; returns new deque with new last item added
|
|
||||||
(let ((rear (deque-rear deque)))
|
|
||||||
(make-deque
|
|
||||||
:rear (cons item rear)
|
|
||||||
:last-of-rear (if rear (deque-last-of-rear deque) item)
|
|
||||||
:front (deque-front deque)
|
|
||||||
:last-of-front (deque-last-of-front deque))))
|
|
||||||
|
|
||||||
(defun deque-push-first (deque item)
|
|
||||||
;; like deque-add-first, but returns same deque with new first item added destructively
|
|
||||||
(let ((front (deque-front deque)))
|
|
||||||
(setf (deque-front deque) (cons item front))
|
|
||||||
(when (null front)
|
|
||||||
(setf (deque-last-of-front deque) item))
|
|
||||||
deque))
|
|
||||||
|
|
||||||
(defun deque-push-last (deque item)
|
|
||||||
;; like deque-add-last, but returns same deque with new last item added destructively
|
|
||||||
(let ((rear (deque-rear deque)))
|
|
||||||
(setf (deque-rear deque) (cons item rear))
|
|
||||||
(when (null rear)
|
|
||||||
(setf (deque-last-of-rear deque) item))
|
|
||||||
deque))
|
|
||||||
|
|
||||||
(defun deque-length (deque)
|
|
||||||
(+ (length (deque-front deque)) (length (deque-rear deque))))
|
|
||||||
|
|
||||||
(defun deque-delete (deque item)
|
|
||||||
;; ad hoc function to delete single occurrence of item from deque destructively
|
|
||||||
(let ((front (deque-front deque))
|
|
||||||
(rear (deque-rear deque)))
|
|
||||||
(cond
|
|
||||||
((and front (eql item (first front)))
|
|
||||||
(when (null (setf (deque-front deque) (rest front)))
|
|
||||||
(setf (deque-last-of-front deque) nil))
|
|
||||||
t)
|
|
||||||
((and rear (eql item (first rear)))
|
|
||||||
(when (null (setf (deque-rear deque) (rest rear)))
|
|
||||||
(setf (deque-last-of-rear deque) nil))
|
|
||||||
t)
|
|
||||||
((dotails (l front nil)
|
|
||||||
(when (and (rest l) (eql item (second l)))
|
|
||||||
(when (null (setf (rest l) (rrest l)))
|
|
||||||
(setf (deque-last-of-front deque) (first l)))
|
|
||||||
(return t))))
|
|
||||||
((dotails (l rear nil)
|
|
||||||
(when (and (rest l) (eql item (second l)))
|
|
||||||
(when (null (setf (rest l) (rrest l)))
|
|
||||||
(setf (deque-last-of-rear deque) (first l)))
|
|
||||||
(return t))))
|
|
||||||
(t
|
|
||||||
nil))))
|
|
||||||
|
|
||||||
(defun deque-delete-if (function deque)
|
|
||||||
;; ad hoc function to delete items from deque destructively
|
|
||||||
(let* ((deleted nil)
|
|
||||||
(front* (prog->
|
|
||||||
(delete-if (deque-front deque) ->* item)
|
|
||||||
(when (funcall function item)
|
|
||||||
(setf deleted t)))))
|
|
||||||
(when deleted
|
|
||||||
(setf (deque-front deque) front*)
|
|
||||||
(setf (deque-last-of-front deque) (first (last front*)))))
|
|
||||||
(let* ((deleted nil)
|
|
||||||
(rear* (prog->
|
|
||||||
(delete-if (deque-rear deque) :from-end t ->* item)
|
|
||||||
(when (funcall function item)
|
|
||||||
(setf deleted t)))))
|
|
||||||
(when deleted
|
|
||||||
(setf (deque-rear deque) rear*)
|
|
||||||
(setf (deque-last-of-rear deque) (first (last rear*)))))
|
|
||||||
deque)
|
|
||||||
|
|
||||||
(defun mapnconc-deque (function deque &key reverse)
|
|
||||||
;; ad hoc function to nconc results of applying function to items in deque
|
|
||||||
(let ((front (deque-front deque))
|
|
||||||
(rear (deque-rear deque))
|
|
||||||
(result nil) result-last)
|
|
||||||
(dolist (item (if reverse rear front))
|
|
||||||
(if (or (null function) (eq 'list function) (eq #'list function))
|
|
||||||
(collect item result)
|
|
||||||
(ncollect (funcall function item) result)))
|
|
||||||
(dolist (item (if reverse (reverse front) (reverse rear)))
|
|
||||||
(if (or (null function) (eq 'list function) (eq #'list function))
|
|
||||||
(collect item result)
|
|
||||||
(ncollect (funcall function item) result)))
|
|
||||||
result))
|
|
||||||
|
|
||||||
;;; deque2.lisp EOF
|
|
Binary file not shown.
|
@ -1,250 +0,0 @@
|
||||||
;;; -*- Mode: Lisp; Syntax: Common-Lisp; Package: snark -*-
|
|
||||||
;;; File: dp-refute.lisp
|
|
||||||
;;; The contents of this file are subject to the Mozilla Public License
|
|
||||||
;;; Version 1.1 (the "License"); you may not use this file except in
|
|
||||||
;;; compliance with the License. You may obtain a copy of the License at
|
|
||||||
;;; http://www.mozilla.org/MPL/
|
|
||||||
;;;
|
|
||||||
;;; Software distributed under the License is distributed on an "AS IS"
|
|
||||||
;;; basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the
|
|
||||||
;;; License for the specific language governing rights and limitations
|
|
||||||
;;; under the License.
|
|
||||||
;;;
|
|
||||||
;;; The Original Code is SNARK.
|
|
||||||
;;; The Initial Developer of the Original Code is SRI International.
|
|
||||||
;;; Portions created by the Initial Developer are Copyright (C) 1981-2011.
|
|
||||||
;;; All Rights Reserved.
|
|
||||||
;;;
|
|
||||||
;;; Contributor(s): Mark E. Stickel <stickel@ai.sri.com>.
|
|
||||||
|
|
||||||
(in-package :snark)
|
|
||||||
|
|
||||||
(declaim (special map-atoms-first *subsuming* *frozen-variables*))
|
|
||||||
|
|
||||||
(defstruct (context
|
|
||||||
(:constructor make-context (formula &optional assignment substitution))
|
|
||||||
(:print-function print-context))
|
|
||||||
formula
|
|
||||||
(substitution nil)
|
|
||||||
(assignment nil))
|
|
||||||
|
|
||||||
(defun make-context2 (formula assignment substitution)
|
|
||||||
(make-context
|
|
||||||
(simplify-formula formula assignment substitution) ;should be incremental for efficiency
|
|
||||||
assignment
|
|
||||||
substitution))
|
|
||||||
|
|
||||||
(defun dp-refute-p (formula)
|
|
||||||
(prog->
|
|
||||||
(dp-refute (make-context formula) ->* substitution)
|
|
||||||
(return-from dp-refute-p (or substitution t))))
|
|
||||||
|
|
||||||
(defun dp-refute (cc context)
|
|
||||||
(when (trace-dp-refute?)
|
|
||||||
(dp-refute-trace context))
|
|
||||||
(cond
|
|
||||||
((eq true (context-formula context))
|
|
||||||
) ;don't do anything if formula is not falsifiable (return failed context?)
|
|
||||||
((eq false (context-formula context))
|
|
||||||
(funcall cc (context-substitution context))) ;succeeded
|
|
||||||
(t
|
|
||||||
(prog->
|
|
||||||
(refute-methods context ->* x)
|
|
||||||
(ecase (first x)
|
|
||||||
|
|
||||||
(instantiate ;extend substitution
|
|
||||||
(second x -> substitution)
|
|
||||||
;; (cl:assert (and (neq (context-substitution context) substitution)
|
|
||||||
;; (tailp (context-substitution context) substitution)))
|
|
||||||
(dp-refute
|
|
||||||
(make-context2
|
|
||||||
(context-formula context)
|
|
||||||
(context-assignment context)
|
|
||||||
substitution)
|
|
||||||
->* substitution)
|
|
||||||
(funcall cc substitution))
|
|
||||||
|
|
||||||
(split
|
|
||||||
(second x -> atom)
|
|
||||||
(third x -> value) ;refute atom-value branch first
|
|
||||||
(if (eq true value) false true -> not-value)
|
|
||||||
(when (trace-dp-refute?)
|
|
||||||
(dp-refute-trace context atom value))
|
|
||||||
(dp-refute
|
|
||||||
(make-context2
|
|
||||||
(context-formula context)
|
|
||||||
(cons (list atom value) (context-assignment context))
|
|
||||||
(context-substitution context))
|
|
||||||
->* substitution)
|
|
||||||
(when (trace-dp-refute?)
|
|
||||||
(dp-refute-trace context atom not-value))
|
|
||||||
(dp-refute
|
|
||||||
(make-context2
|
|
||||||
(context-formula context)
|
|
||||||
(cons (list atom not-value) (context-assignment context))
|
|
||||||
substitution)
|
|
||||||
->* substitution)
|
|
||||||
(funcall cc substitution))
|
|
||||||
|
|
||||||
(close-branch-and-refute-other-branch
|
|
||||||
(second x -> atom)
|
|
||||||
(third x -> value)
|
|
||||||
(fourth x -> substitution)
|
|
||||||
(if (eq true value) false true -> not-value)
|
|
||||||
;; (cl:assert (and (neq (context-substitution context) substitution)
|
|
||||||
;; (tailp (context-substitution context) substitution)))
|
|
||||||
(dp-refute
|
|
||||||
(make-context2
|
|
||||||
(context-formula context)
|
|
||||||
(cons (list atom not-value) (context-assignment context))
|
|
||||||
substitution)
|
|
||||||
->* substitution)
|
|
||||||
(funcall cc substitution))))))
|
|
||||||
nil)
|
|
||||||
|
|
||||||
(defun dp-refute-trace (context &optional atom value)
|
|
||||||
(terpri)
|
|
||||||
(dolist (x (context-assignment context))
|
|
||||||
(declare (ignorable x))
|
|
||||||
(princ " "))
|
|
||||||
(cond
|
|
||||||
((null atom)
|
|
||||||
(princ "REFUTE: ")
|
|
||||||
(print-context context))
|
|
||||||
(t
|
|
||||||
(princ " ")
|
|
||||||
(prin1 atom)
|
|
||||||
(princ " <- ")
|
|
||||||
(prin1 value))))
|
|
||||||
|
|
||||||
;;; simple versions of choose-atom, refute-methods, and simplify-formula
|
|
||||||
;;; that are suitable for SNARK are given
|
|
||||||
;;; STeP will require much more sophisticated versions
|
|
||||||
|
|
||||||
(defun choose-atom (cc context)
|
|
||||||
;; pick any atom not already assigned a value
|
|
||||||
;; better heuristic selection is called for
|
|
||||||
(prog->
|
|
||||||
(context-substitution context -> substitution)
|
|
||||||
(identity map-atoms-first -> maf)
|
|
||||||
(quote t -> map-atoms-first)
|
|
||||||
(map-atoms-in-wff (context-formula context) ->* atom polarity)
|
|
||||||
(declare (ignore polarity))
|
|
||||||
(identity maf -> map-atoms-first)
|
|
||||||
(unless (member atom (context-assignment context) :key #'car :test (lambda (x y) (equal-p x y substitution)))
|
|
||||||
(funcall cc atom)
|
|
||||||
;; quit after finding first one
|
|
||||||
;; STeP may require additional choices, if falsifiability depends on order in which branches are explored
|
|
||||||
(return-from choose-atom atom))))
|
|
||||||
|
|
||||||
(defun refute-methods (cc context)
|
|
||||||
;; pick an atom to assign
|
|
||||||
;; attempt to refute it by unification with a complementary assignment
|
|
||||||
;; there will be more ways to refute atoms when theories are interpreted
|
|
||||||
(let ((assignment (context-assignment context))
|
|
||||||
(substitution (context-substitution context)))
|
|
||||||
(prog->
|
|
||||||
(choose-atom context ->* atom)
|
|
||||||
(quote nil -> empty-substitution-works)
|
|
||||||
(prog->
|
|
||||||
(dolist assignment ->* x)
|
|
||||||
(first x -> atom2)
|
|
||||||
(second x -> value2)
|
|
||||||
(if (eq true value2) false true -> value)
|
|
||||||
(unify atom atom2 substitution ->* substitution2)
|
|
||||||
(when (eq substitution2 substitution)
|
|
||||||
(setf empty-substitution-works t))
|
|
||||||
(funcall cc `(close-branch-and-refute-other-branch ,atom ,value ,substitution2)))
|
|
||||||
(unless empty-substitution-works
|
|
||||||
(funcall cc `(split ,atom ,true))))))
|
|
||||||
|
|
||||||
(defun simplify-formula (formula assignment substitution)
|
|
||||||
(prog->
|
|
||||||
(map-atoms-in-wff-and-compose-result formula ->* atom polarity)
|
|
||||||
(declare (ignore polarity))
|
|
||||||
(or (second (assoc-p atom assignment substitution))
|
|
||||||
(instantiate atom substitution))))
|
|
||||||
|
|
||||||
(defun print-context (context &optional (stream *standard-output*) depth)
|
|
||||||
(declare (ignore depth))
|
|
||||||
(format stream "#<context formula: ")
|
|
||||||
(prin1 (context-formula context) stream)
|
|
||||||
(format stream "; assignment: ")
|
|
||||||
(prin1 (context-assignment context) stream)
|
|
||||||
(format stream "; substitution: ")
|
|
||||||
(prin1 (context-substitution context) stream)
|
|
||||||
(format stream ">")
|
|
||||||
context)
|
|
||||||
|
|
||||||
(defun dp-subsume* (cc wff1 wff2 subst neg)
|
|
||||||
(cond
|
|
||||||
((if neg
|
|
||||||
(or (eq false wff2) (eq true wff1))
|
|
||||||
(or (eq true wff2) (eq false wff1)))
|
|
||||||
(funcall cc subst))
|
|
||||||
((if neg
|
|
||||||
(or (eq true wff2) (eq false wff1))
|
|
||||||
(or (eq false wff2) (eq true wff1)))
|
|
||||||
)
|
|
||||||
(t
|
|
||||||
(prog->
|
|
||||||
(if neg
|
|
||||||
(maximum-and-minimum-clause-lengths-neg wff1 subst)
|
|
||||||
(maximum-and-minimum-clause-lengths wff1 subst)
|
|
||||||
-> max1 min1)
|
|
||||||
(declare (ignore min1))
|
|
||||||
(if neg
|
|
||||||
(maximum-and-minimum-clause-lengths-neg wff2 subst)
|
|
||||||
(maximum-and-minimum-clause-lengths wff2 subst)
|
|
||||||
-> max2 min2)
|
|
||||||
(declare (ignore max2))
|
|
||||||
(when (> max1 min2)
|
|
||||||
(return-from dp-subsume*)))
|
|
||||||
(dp-refute
|
|
||||||
cc
|
|
||||||
(make-context2
|
|
||||||
(if neg (conjoin wff2 (negate wff1)) (conjoin (negate wff2) wff1))
|
|
||||||
nil
|
|
||||||
subst)))))
|
|
||||||
|
|
||||||
(defun dp-subsume-constraint-alists* (cc constraint-alist1 constraint-alist2 subst)
|
|
||||||
(cond
|
|
||||||
((null constraint-alist1)
|
|
||||||
(funcall cc subst))
|
|
||||||
(t
|
|
||||||
(prog->
|
|
||||||
(first constraint-alist1 -> x)
|
|
||||||
(dp-subsume* (cdr x) (or (cdr (assoc (car x) constraint-alist2)) false) subst nil ->* subst)
|
|
||||||
(dp-subsume-constraint-alists* (rest constraint-alist1) constraint-alist2 subst ->* subst)
|
|
||||||
(funcall cc subst))))
|
|
||||||
nil)
|
|
||||||
|
|
||||||
(defun dp-subsume (cc wff1 wff2 subst neg)
|
|
||||||
(prog->
|
|
||||||
(identity *subsuming* -> sb)
|
|
||||||
(quote t -> *subsuming*)
|
|
||||||
(identity *frozen-variables* -> fv) ;save list of frozen variables
|
|
||||||
(variables wff2 subst fv -> *frozen-variables*) ;add wff2's variables to frozen variables
|
|
||||||
(dp-subsume* wff1 wff2 subst neg ->* subst)
|
|
||||||
(identity sb -> *subsuming*)
|
|
||||||
(identity fv -> *frozen-variables*) ;restore list of frozen variables
|
|
||||||
(funcall cc subst)))
|
|
||||||
|
|
||||||
(defun dp-subsume+ (row1 row2)
|
|
||||||
(prog->
|
|
||||||
(row-wff row1 -> wff1)
|
|
||||||
(row-wff row2 -> wff2)
|
|
||||||
(row-constraints row1 -> constraint-alist1)
|
|
||||||
(row-constraints row2 -> constraint-alist2)
|
|
||||||
(row-answer row1 -> answer1)
|
|
||||||
(row-answer row2 -> answer2)
|
|
||||||
|
|
||||||
(row-variables row2 *frozen-variables* -> *frozen-variables*)
|
|
||||||
|
|
||||||
(dp-subsume* wff1 wff2 nil nil ->* subst)
|
|
||||||
(dp-subsume-constraint-alists* constraint-alist1 constraint-alist2 subst ->* subst)
|
|
||||||
(dp-subsume* answer1 answer2 subst nil ->* subst)
|
|
||||||
(declare (ignore subst))
|
|
||||||
(return-from dp-subsume+ t)))
|
|
||||||
|
|
||||||
;;; dp-refute.lisp EOF
|
|
|
@ -1,46 +0,0 @@
|
||||||
;;; -*- Mode: Lisp; Syntax: Common-Lisp; Package: common-lisp-user -*-
|
|
||||||
;;; File: dpll-system.lisp
|
|
||||||
;;; The contents of this file are subject to the Mozilla Public License
|
|
||||||
;;; Version 1.1 (the "License"); you may not use this file except in
|
|
||||||
;;; compliance with the License. You may obtain a copy of the License at
|
|
||||||
;;; http://www.mozilla.org/MPL/
|
|
||||||
;;;
|
|
||||||
;;; Software distributed under the License is distributed on an "AS IS"
|
|
||||||
;;; basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the
|
|
||||||
;;; License for the specific language governing rights and limitations
|
|
||||||
;;; under the License.
|
|
||||||
;;;
|
|
||||||
;;; The Original Code is SNARK.
|
|
||||||
;;; The Initial Developer of the Original Code is SRI International.
|
|
||||||
;;; Portions created by the Initial Developer are Copyright (C) 1981-2010.
|
|
||||||
;;; All Rights Reserved.
|
|
||||||
;;;
|
|
||||||
;;; Contributor(s): Mark E. Stickel <stickel@ai.sri.com>.
|
|
||||||
|
|
||||||
(in-package :common-lisp-user)
|
|
||||||
|
|
||||||
(defpackage :snark-dpll
|
|
||||||
(:use :common-lisp :snark-lisp)
|
|
||||||
(:export
|
|
||||||
#:dp-prover #:dp-version
|
|
||||||
#:dp-tracing #:dp-tracing-state #:dp-tracing-models #:dp-tracing-choices
|
|
||||||
#:dp-satisfiable-p #:dp-satisfiable-file-p #:make-dp-clause-set
|
|
||||||
#:dp-insert #:dp-insert-sorted #:dp-insert-wff #:dp-insert-file
|
|
||||||
#:dp-count #:dp-clauses #:dp-output-clauses-to-file #:wff-clauses
|
|
||||||
#:dp-horn-clause-set-p
|
|
||||||
#:checkpoint-dp-clause-set #:restore-dp-clause-set #:uncheckpoint-dp-clause-set
|
|
||||||
#:choose-an-atom-of-a-shortest-clause
|
|
||||||
#:choose-an-atom-of-a-shortest-clause-randomly
|
|
||||||
#:choose-an-atom-of-a-shortest-clause-with-most-occurrences
|
|
||||||
#:choose-an-atom-of-a-shortest-clause-with-most-occurrences-randomly
|
|
||||||
#:choose-an-atom-of-a-shortest-positive-clause
|
|
||||||
#:choose-an-atom-of-a-shortest-positive-clause-randomly
|
|
||||||
#:choose-an-atom-of-a-shortest-positive-clause-with-most-occurrences
|
|
||||||
#:choose-an-atom-of-a-shortest-positive-clause-with-most-occurrences-randomly
|
|
||||||
#:lookahead-true #:lookahead-false
|
|
||||||
#:lookahead-true-false #:lookahead-false-true
|
|
||||||
))
|
|
||||||
|
|
||||||
(loads "davis-putnam3")
|
|
||||||
|
|
||||||
;;; dpll-system.lisp EOF
|
|
Binary file not shown.
|
@ -1,115 +0,0 @@
|
||||||
;;; -*- Mode: Lisp; Syntax: Common-Lisp; Package: snark -*-
|
|
||||||
;;; File: equal.lisp
|
|
||||||
;;; The contents of this file are subject to the Mozilla Public License
|
|
||||||
;;; Version 1.1 (the "License"); you may not use this file except in
|
|
||||||
;;; compliance with the License. You may obtain a copy of the License at
|
|
||||||
;;; http://www.mozilla.org/MPL/
|
|
||||||
;;;
|
|
||||||
;;; Software distributed under the License is distributed on an "AS IS"
|
|
||||||
;;; basis, WITHOUT WARRANTY OF ANY KIND, either express or implied. See the
|
|
||||||
;;; License for the specific language governing rights and limitations
|
|
||||||
;;; under the License.
|
|
||||||
;;;
|
|
||||||
;;; The Original Code is SNARK.
|
|
||||||
;;; The Initial Developer of the Original Code is SRI International.
|
|
||||||
;;; Portions created by the Initial Developer are Copyright (C) 1981-2010.
|
|
||||||
;;; All Rights Reserved.
|
|
||||||
;;;
|
|
||||||
;;; Contributor(s): Mark E. Stickel <stickel@ai.sri.com>.
|
|
||||||
|
|
||||||
(in-package :snark)
|
|
||||||
|
|
||||||
;;; EQ suffices to compare function, relation, and variable symbols
|
|
||||||
;;; EQL suffices to compare constant symbols
|
|
||||||
;;; string constants must be term-hashed to be EQ
|
|
||||||
|
|
||||||
(defun equal-p (x y &optional subst)
|
|
||||||
(or (eql x y)
|
|
||||||
(dereference
|
|
||||||
x subst
|
|
||||||
:if-variable (dereference y subst :if-variable (eq x y))
|
|
||||||
:if-constant (dereference y subst :if-constant (eql x y))
|
|
||||||
:if-compound-cons (dereference
|
|
||||||
y subst
|
|
||||||
:if-compound-cons (and (equal-p (carc x) (carc y) subst)
|
|
||||||
(equal-p (cdrc x) (cdrc y) subst)))
|
|
||||||
:if-compound-appl (dereference
|
|
||||||
y subst
|
|
||||||
:if-compound-appl
|
|
||||||
(or (eq x y)
|
|
||||||
(let ((head (heada x)))
|
|
||||||
(cond
|
|
||||||
((neq head (heada y))
|
|
||||||
nil)
|
|
||||||
(t
|
|
||||||
(dolist (fun (function-equal-code head) (equal-p (argsa x) (argsa y) subst))
|
|
||||||
(let ((v (funcall fun x y subst)))
|
|
||||||
(unless (eq none v)
|
|
||||||
(return v))))))))))))
|
|
||||||
|
|
||||||
(defun ac-equal-p (x y subst)
|
|
||||||
(let ((fn (head x))
|
|
||||||
(terms1 (args x))
|
|
||||||
(terms2 (args y)))
|
|
||||||
(and (similar-argument-list-ac1-p fn terms1 terms2 subst)
|
|
||||||
(progn
|
|
||||||
(setf terms2 (cons nil (copy-list (argument-list-a1 fn terms2 subst))))
|
|
||||||
(loop for term1 in (argument-list-a1 fn terms1 subst)
|
|
||||||
always (loop for y1 = terms2 then y2
|
|
||||||
for y2 on (cdr terms2)
|
|
||||||
thereis (if (equal-p term1 (car y2) subst)
|
|
||||||
(rplacd y1 (cdr y2)) ;non-nil
|
|
||||||
nil)))))))
|
|
||||||
|
|
||||||
(defun commutative-equal-p (x y subst)
|
|
||||||
(mvlet (((list* x y z) (args x))
|
|
||||||
((list* u v w) (args y)))
|
|
||||||
(and (or (eq z w) (equal-p z w subst))
|
|
||||||
(cond
|
|
||||||
((equal-p x u subst)
|
|
||||||
(equal-p y v subst))
|
|
||||||
((equal-p x v subst)
|
|
||||||
(equal-p y u subst))
|
|
||||||
(t
|
|
||||||
nil)))))
|
|
||||||
|
|
||||||
(defun associative-equal-p (x y subst)
|
|
||||||
(let ((fn (head x))
|
|
||||||
(terms1 (args x))
|
|
||||||
(terms2 (args y)))
|
|
||||||
(and (eql (argument-count-a1 fn terms1 subst)
|
|
||||||
(argument-count-a1 fn terms2 subst))
|
|
||||||
(let (x y)
|
|
||||||
(loop
|
|
||||||
(cond
|
|
||||||
((null terms1)
|
|
||||||
(return (null terms2)))
|
|
||||||
((null terms2)
|
|
||||||
(return nil))
|
|
||||||
(t
|
|
||||||
(setf (values x terms1) (first-and-rest-of-vector terms1 subst fn none))
|
|
||||||
(setf (values y terms2) (first-and-rest-of-vector terms2 subst fn none))
|
|
||||||
(unless (equal-p x y subst)
|
|
||||||
(return nil)))))))))
|
|
||||||
|
|
||||||
(defun member-p (item list &optional subst)
|
|
||||||
(or (member item list)
|
|
||||||
(dotails (l list nil)
|
|
||||||
(when (equal-p item (first l) subst)
|
|
||||||
(return l)))))
|
|
||||||
|
|
||||||
(defun assoc-p (item alist &optional subst)
|
|
||||||
(or (assoc item alist)
|
|
||||||
(dolist (pair alist nil)
|
|
||||||
(when (equal-p item (car pair) subst)
|
|
||||||
(return pair)))))
|
|
||||||
|
|
||||||
(defun literal-member-p (atom polarity list)
|
|
||||||
(or (dolist (x list nil)
|
|
||||||
(when (and (eq atom (first x)) (eq polarity (second x)))
|
|
||||||
(return x)))
|
|
||||||
(dolist (x list nil)
|
|
||||||
(when (and (eq polarity (second x)) (equal-p atom (first x)))
|
|
||||||
(return x)))))
|
|
||||||
|
|
||||||
;;; equal.lisp EOF
|
|
Some files were not shown because too many files have changed in this diff Show more
Loading…
Reference in a new issue