Spectra/snark-20120808r02/examples/RNG009-5+rm_eq_rstfp.kif

61 lines
2.4 KiB
Text
Raw Normal View History

2017-01-14 22:08:51 -05:00
;--------------------------------------------------------------------------
; File : RNG009-5 : TPTP v2.2.0. Released v1.0.0.
; Domain : Ring Theory
; Problem : If X*X*X = X then the ring is commutative
; Version : [Peterson & Stickel,1981] (equality) axioms :
; Reduced > Incomplete.
; English : Given a ring in which for all x, x * x * x = x, prove that
; for all x and y, x * y = y * x.
; Refs : [PS81] Peterson & Stickel (1981), Complete Sets of Reductions
; : [Ove90] Overbeek (1990), ATP competition announced at CADE-10
; : [Ove93] Overbeek (1993), The CADE-11 Competitions: A Personal
; : [LM93] Lusk & McCune (1993), Uniform Strategies: The CADE-11
; : [Zha93] Zhang (1993), Automated Proofs of Equality Problems in
; Source : [Ove90]
; Names : CADE-11 Competition Eq-7 [Ove90]
; : THEOREM EQ-7 [LM93]
; : PROBLEM 7 [Zha93]
; Status : unsatisfiable
; Rating : 0.67 v2.2.0, 0.71 v2.1.0, 1.00 v2.0.0
; Syntax : Number of clauses : 9 ( 0 non-Horn; 9 unit; 1 RR)
; Number of literals : 9 ( 9 equality)
; Maximal clause size : 1 ( 1 average)
; Number of predicates : 1 ( 0 propositional; 2-2 arity)
; Number of functors : 6 ( 3 constant; 0-2 arity)
; Number of variables : 17 ( 0 singleton)
; Maximal term depth : 3 ( 2 average)
; Comments :
; : tptp2X -f kif -t rm_equality:rstfp RNG009-5.p
;--------------------------------------------------------------------------
; right_identity, axiom.
(or (= (add ?A additive_identity) ?A))
; right_additive_inverse, axiom.
(or (= (add ?A (additive_inverse ?A)) additive_identity))
; distribute1, axiom.
(or (= (multiply ?A (add ?B ?C)) (add (multiply ?A ?B) (multiply ?A ?C))))
; distribute2, axiom.
(or (= (multiply (add ?A ?B) ?C) (add (multiply ?A ?C) (multiply ?B ?C))))
; associative_addition, axiom.
(or (= (add (add ?A ?B) ?C) (add ?A (add ?B ?C))))
; commutative_addition, axiom.
(or (= (add ?A ?B) (add ?B ?A)))
; associative_multiplication, axiom.
(or (= (multiply (multiply ?A ?B) ?C) (multiply ?A (multiply ?B ?C))))
; x_cubed_is_x, hypothesis.
(or (= (multiply ?A (multiply ?A ?A)) ?A))
; prove_commutativity, conjecture.
(or (/= (multiply a b) (multiply b a)))
;--------------------------------------------------------------------------