Spectra/snark-20120808r02/examples/ROB005-1+rm_eq_rstfp.kif

54 lines
2.3 KiB
Text
Raw Normal View History

2017-01-14 22:08:51 -05:00
;--------------------------------------------------------------------------
; File : ROB005-1 : TPTP v2.2.0. Released v1.0.0.
; Domain : Robbins Algebra
; Problem : c + c=c => Boolean
; Version : [Win90] (equality) axioms.
; English : If there is an element c such that c+c=c, then the algebra
; is Boolean.
; Refs : [HMT71] Henkin et al. (1971), Cylindrical Algebras
; : [Win90] Winker (1990), Robbins Algebra: Conditions that make a
; : [Ove90] Overbeek (1990), ATP competition announced at CADE-10
; : [LW92] Lusk & Wos (1992), Benchmark Problems in Which Equalit
; : [Ove93] Overbeek (1993), The CADE-11 Competitions: A Personal
; : [LM93] Lusk & McCune (1993), Uniform Strategies: The CADE-11
; : [Zha93] Zhang (1993), Automated Proofs of Equality Problems in
; Source : [Ove90]
; Names : CADE-11 Competition Eq-2 [Ove90]
; : Lemma 2.4 [Win90]
; : RA3 [LW92]
; : THEOREM EQ-2 [LM93]
; : PROBLEM 2 [Zha93]
; : robbins.occ.in [OTTER]
; Status : unsatisfiable
; Rating : 0.67 v2.2.0, 0.71 v2.1.0, 0.88 v2.0.0
; Syntax : Number of clauses : 5 ( 0 non-Horn; 5 unit; 2 RR)
; Number of literals : 5 ( 5 equality)
; Maximal clause size : 1 ( 1 average)
; Number of predicates : 1 ( 0 propositional; 2-2 arity)
; Number of functors : 5 ( 3 constant; 0-2 arity)
; Number of variables : 7 ( 0 singleton)
; Maximal term depth : 6 ( 2 average)
; Comments : Commutativity, associativity, and Huntington's axiom
; axiomatize Boolean algebra.
; : tptp2X -f kif -t rm_equality:rstfp ROB005-1.p
;--------------------------------------------------------------------------
; commutativity_of_add, axiom.
(or (= (add ?A ?B) (add ?B ?A)))
; associativity_of_add, axiom.
(or (= (add (add ?A ?B) ?C) (add ?A (add ?B ?C))))
; robbins_axiom, axiom.
(or (= (negate (add (negate (add ?A ?B)) (negate (add ?A (negate ?B))))) ?A))
; idempotence, hypothesis.
(or (= (add c c) c))
; prove_huntingtons_axiom, conjecture.
(or (/= (add (negate (add a (negate b))) (negate (add (negate a) (negate b)))) b))
;--------------------------------------------------------------------------