Spectra/snark-20120808r02/examples/GRP001-1+rm_eq_rstfp.kif

79 lines
2.6 KiB
Text
Raw Normal View History

2017-01-14 22:08:51 -05:00
;--------------------------------------------------------------------------
; File : GRP001-1 : TPTP v2.2.0. Released v1.0.0.
; Domain : Group Theory
; Problem : X^2 = identity => commutativity
; Version : [MOW76] axioms.
; English : If the square of every element is the identity, the system
; is commutative.
; Refs : [Rob63] Robinson (1963), Theorem Proving on the Computer
; : [Wos65] Wos (1965), Unpublished Note
; : [MOW76] McCharen et al. (1976), Problems and Experiments for a
; : [WM76] Wilson & Minker (1976), Resolution, Refinements, and S
; : [Ove90] Overbeek (1990), ATP competition announced at CADE-10
; : [Ove93] Overbeek (1993), The CADE-11 Competitions: A Personal
; : [LM93] Lusk & McCune (1993), Uniform Strategies: The CADE-11
; Source : [MOW76]
; Names : - [Rob63]
; : wos10 [WM76]
; : G1 [MOW76]
; : CADE-11 Competition 1 [Ove90]
; : THEOREM 1 [LM93]
; : xsquared.ver1.in [ANL]
; Status : unsatisfiable
; Rating : 0.00 v2.0.0
; Syntax : Number of clauses : 11 ( 0 non-Horn; 8 unit; 5 RR)
; Number of literals : 19 ( 1 equality)
; Maximal clause size : 4 ( 1 average)
; Number of predicates : 2 ( 0 propositional; 2-3 arity)
; Number of functors : 6 ( 4 constant; 0-2 arity)
; Number of variables : 23 ( 0 singleton)
; Maximal term depth : 2 ( 1 average)
; Comments :
; : tptp2X -f kif -t rm_equality:rstfp GRP001-1.p
;--------------------------------------------------------------------------
; left_identity, axiom.
(or (product identity ?A ?A))
; right_identity, axiom.
(or (product ?A identity ?A))
; left_inverse, axiom.
(or (product (inverse ?A) ?A identity))
; right_inverse, axiom.
(or (product ?A (inverse ?A) identity))
; total_function1, axiom.
(or (product ?A ?B (multiply ?A ?B)))
; total_function2, axiom.
(or (not (product ?A ?B ?C))
(not (product ?A ?B ?D))
(= ?C ?D))
; associativity1, axiom.
(or (not (product ?A ?B ?C))
(not (product ?B ?D ?E))
(not (product ?C ?D ?F))
(product ?A ?E ?F))
; associativity2, axiom.
(or (not (product ?A ?B ?C))
(not (product ?B ?D ?E))
(not (product ?A ?E ?F))
(product ?C ?D ?F))
; square_element, hypothesis.
(or (product ?A ?A identity))
; a_times_b_is_c, hypothesis.
(or (product a b c))
; prove_b_times_a_is_c, conjecture.
(or (not (product b a c)))
;--------------------------------------------------------------------------