mirror of
https://github.com/RAIRLab/Spectra.git
synced 2024-11-22 08:56:29 -05:00
98 lines
3.6 KiB
Text
98 lines
3.6 KiB
Text
|
;--------------------------------------------------------------------------
|
||
|
; File : RNG011-5 : TPTP v2.2.0. Released v1.0.0.
|
||
|
; Domain : Ring Theory
|
||
|
; Problem : In a right alternative ring (((X,X,Y)*X)*(X,X,Y)) = Add Id
|
||
|
; Version : [Ove90] (equality) axioms :
|
||
|
; Incomplete > Augmented > Incomplete.
|
||
|
; English :
|
||
|
|
||
|
; Refs : [Ove90] Overbeek (1990), ATP competition announced at CADE-10
|
||
|
; : [Ove93] Overbeek (1993), The CADE-11 Competitions: A Personal
|
||
|
; : [LM93] Lusk & McCune (1993), Uniform Strategies: The CADE-11
|
||
|
; : [Zha93] Zhang (1993), Automated Proofs of Equality Problems in
|
||
|
; Source : [Ove90]
|
||
|
; Names : CADE-11 Competition Eq-10 [Ove90]
|
||
|
; : THEOREM EQ-10 [LM93]
|
||
|
; : PROBLEM 10 [Zha93]
|
||
|
|
||
|
; Status : unsatisfiable
|
||
|
; Rating : 0.00 v2.0.0
|
||
|
; Syntax : Number of clauses : 22 ( 0 non-Horn; 22 unit; 2 RR)
|
||
|
; Number of literals : 22 ( 22 equality)
|
||
|
; Maximal clause size : 1 ( 1 average)
|
||
|
; Number of predicates : 1 ( 0 propositional; 2-2 arity)
|
||
|
; Number of functors : 8 ( 3 constant; 0-3 arity)
|
||
|
; Number of variables : 37 ( 2 singleton)
|
||
|
; Maximal term depth : 5 ( 2 average)
|
||
|
|
||
|
; Comments :
|
||
|
; : tptp2X -f kif -t rm_equality:rstfp RNG011-5.p
|
||
|
;--------------------------------------------------------------------------
|
||
|
; commutative_addition, axiom.
|
||
|
(or (= (add ?A ?B) (add ?B ?A)))
|
||
|
|
||
|
; associative_addition, axiom.
|
||
|
(or (= (add (add ?A ?B) ?C) (add ?A (add ?B ?C))))
|
||
|
|
||
|
; right_identity, axiom.
|
||
|
(or (= (add ?A additive_identity) ?A))
|
||
|
|
||
|
; left_identity, axiom.
|
||
|
(or (= (add additive_identity ?A) ?A))
|
||
|
|
||
|
; right_additive_inverse, axiom.
|
||
|
(or (= (add ?A (additive_inverse ?A)) additive_identity))
|
||
|
|
||
|
; left_additive_inverse, axiom.
|
||
|
(or (= (add (additive_inverse ?A) ?A) additive_identity))
|
||
|
|
||
|
; additive_inverse_identity, axiom.
|
||
|
(or (= (additive_inverse additive_identity) additive_identity))
|
||
|
|
||
|
; property_of_inverse_and_add, axiom.
|
||
|
(or (= (add ?A (add (additive_inverse ?A) ?B)) ?B))
|
||
|
|
||
|
; distribute_additive_inverse, axiom.
|
||
|
(or (= (additive_inverse (add ?A ?B)) (add (additive_inverse ?A) (additive_inverse ?B))))
|
||
|
|
||
|
; additive_inverse_additive_inverse, axiom.
|
||
|
(or (= (additive_inverse (additive_inverse ?A)) ?A))
|
||
|
|
||
|
; multiply_additive_id1, axiom.
|
||
|
(or (= (multiply ?A additive_identity) additive_identity))
|
||
|
|
||
|
; multiply_additive_id2, axiom.
|
||
|
(or (= (multiply additive_identity ?A) additive_identity))
|
||
|
|
||
|
; product_of_inverse, axiom.
|
||
|
(or (= (multiply (additive_inverse ?A) (additive_inverse ?B)) (multiply ?A ?B)))
|
||
|
|
||
|
; multiply_additive_inverse1, axiom.
|
||
|
(or (= (multiply ?A (additive_inverse ?B)) (additive_inverse (multiply ?A ?B))))
|
||
|
|
||
|
; multiply_additive_inverse2, axiom.
|
||
|
(or (= (multiply (additive_inverse ?A) ?B) (additive_inverse (multiply ?A ?B))))
|
||
|
|
||
|
; distribute1, axiom.
|
||
|
(or (= (multiply ?A (add ?B ?C)) (add (multiply ?A ?B) (multiply ?A ?C))))
|
||
|
|
||
|
; distribute2, axiom.
|
||
|
(or (= (multiply (add ?A ?B) ?C) (add (multiply ?A ?C) (multiply ?B ?C))))
|
||
|
|
||
|
; right_alternative, axiom.
|
||
|
(or (= (multiply (multiply ?A ?B) ?B) (multiply ?A (multiply ?B ?B))))
|
||
|
|
||
|
; associator, axiom.
|
||
|
(or (= (associator ?A ?B ?C) (add (multiply (multiply ?A ?B) ?C) (additive_inverse (multiply ?A (multiply ?B ?C))))))
|
||
|
|
||
|
; commutator, axiom.
|
||
|
(or (= (commutator ?A ?B) (add (multiply ?B ?A) (additive_inverse (multiply ?A ?B)))))
|
||
|
|
||
|
; middle_associator, axiom.
|
||
|
(or (= (multiply (multiply (associator ?A ?A ?B) ?A) (associator ?A ?A ?B)) additive_identity))
|
||
|
|
||
|
; prove_equality, conjecture.
|
||
|
(or (/= (multiply (multiply (associator a a b) a) (associator a a b)) additive_identity))
|
||
|
|
||
|
;--------------------------------------------------------------------------
|