mirror of
https://github.com/Brandon-Rozek/matmod.git
synced 2025-12-07 04:30:23 +00:00
Another attempt
This commit is contained in:
parent
0a894388a0
commit
7e4a570407
1 changed files with 30 additions and 24 deletions
54
vsp.py
54
vsp.py
|
|
@ -43,10 +43,10 @@ def has_vsp(model: Model, impfunction: ModelFunction,
|
||||||
top = model.ordering.top()
|
top = model.ordering.top()
|
||||||
bottom = model.ordering.bottom()
|
bottom = model.ordering.bottom()
|
||||||
|
|
||||||
|
# Cache of closures
|
||||||
C: Dict[ModelValue, Set[ModelValue]] = {}
|
C: Dict[ModelValue, Set[ModelValue]] = {}
|
||||||
|
|
||||||
for x in model.designated_values:
|
for x in model.designated_values:
|
||||||
|
|
||||||
# Discard ({⊥} ∪ A', B) subalgebras
|
# Discard ({⊥} ∪ A', B) subalgebras
|
||||||
if bottom is not None and x == bottom:
|
if bottom is not None and x == bottom:
|
||||||
continue
|
continue
|
||||||
|
|
@ -55,19 +55,31 @@ def has_vsp(model: Model, impfunction: ModelFunction,
|
||||||
if top is not None and negation_defined and x == top:
|
if top is not None and negation_defined and x == top:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
if x not in C:
|
candidate_ys = [y for y in model.designated_values if impfunction(x, y) not in model.designated_values]
|
||||||
C[x] = model_closure({x,}, model.logical_operations, None)
|
|
||||||
Xs = C[x]
|
if len(candidate_ys) == 0:
|
||||||
|
continue
|
||||||
|
|
||||||
|
carrier_set_left: Set[ModelValue] = model_closure(C.get(x, {x,}), model.logical_operations, bottom)
|
||||||
|
C[x] = carrier_set_left
|
||||||
|
|
||||||
# Discard ({⊥} ∪ A', B) subalgebras
|
# Discard ({⊥} ∪ A', B) subalgebras
|
||||||
if bottom is not None and bottom in Xs:
|
if bottom is not None and bottom in carrier_set_left:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
# Discard ({⊤} ∪ A', B) subalgebras when negation is defined
|
# Discard ({⊤} ∪ A', B) subalgebras when negation is defined
|
||||||
if top is not None and negation_defined and top in Xs:
|
if top is not None and negation_defined and top in carrier_set_left:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
|
for y in candidate_ys:
|
||||||
|
# Discard ({a} ∪ A', {b} ∪ B') subalgebras when a <= b
|
||||||
|
if model.ordering.is_lt(x, y):
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Discard ({a} ∪ A', {b} ∪ B') subalgebras when b <= a and negation is defined
|
||||||
|
if negation_defined and model.ordering.is_lt(y, x):
|
||||||
|
continue
|
||||||
|
|
||||||
for y in model.designated_values - Xs:
|
|
||||||
|
|
||||||
# Discard (A, {⊤} ∪ B') subalgebras
|
# Discard (A, {⊤} ∪ B') subalgebras
|
||||||
if top is not None and y == top:
|
if top is not None and y == top:
|
||||||
|
|
@ -77,36 +89,30 @@ def has_vsp(model: Model, impfunction: ModelFunction,
|
||||||
if bottom is not None and negation_defined and y == bottom:
|
if bottom is not None and negation_defined and y == bottom:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
# Discard ({a} ∪ A', {b} ∪ B') subalgebras when a <= b
|
carrier_set_right: Set[ModelValue] = model_closure(C.get(y, {y,}), model.logical_operations, top)
|
||||||
if model.ordering.is_lt(x, y):
|
C[y] = carrier_set_right
|
||||||
continue
|
|
||||||
|
|
||||||
# Discard ({a} ∪ A', {b} ∪ B') subalgebras when b <= a and negation is defined
|
|
||||||
if negation_defined and model.ordering.is_lt(y, x):
|
|
||||||
continue
|
|
||||||
|
|
||||||
if y not in C:
|
|
||||||
C[y] = model_closure({y,}, model.logical_operations, None)
|
|
||||||
Ys = C[y]
|
|
||||||
|
|
||||||
# Discard (A, {⊤} ∪ B') subalgebras
|
# Discard (A, {⊤} ∪ B') subalgebras
|
||||||
if top is not None and top in Ys:
|
if top is not None and top in carrier_set_right:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
# Discard (A, {⊥} ∪ B') subalgebras when negation is defined
|
# Discard (A, {⊥} ∪ B') subalgebras when negation is defined
|
||||||
if bottom is not None and negation_defined and bottom in Ys:
|
if bottom is not None and negation_defined and bottom in carrier_set_right:
|
||||||
continue
|
continue
|
||||||
|
|
||||||
if not Xs.isdisjoint(Ys):
|
# Discard subalgebras that intersect
|
||||||
|
if not carrier_set_left.isdisjoint(carrier_set_right):
|
||||||
continue
|
continue
|
||||||
|
|
||||||
|
# Check whether for all pairs in the subalgebra,
|
||||||
|
# that implication is falsified.
|
||||||
falsified = True
|
falsified = True
|
||||||
for (xi, yi) in product(Xs, Ys):
|
for (x2, y2) in product(carrier_set_left, carrier_set_right):
|
||||||
if impfunction(xi, yi) in model.designated_values:
|
if impfunction(x2, y2) in model.designated_values:
|
||||||
falsified = False
|
falsified = False
|
||||||
break
|
break
|
||||||
|
|
||||||
if falsified:
|
if falsified:
|
||||||
return VSP_Result(True, model.name, Xs, Ys)
|
return VSP_Result(True, model.name, carrier_set_left, carrier_set_right)
|
||||||
|
|
||||||
return VSP_Result(False, model.name)
|
return VSP_Result(False, model.name)
|
||||||
|
|
|
||||||
Loading…
Add table
Add a link
Reference in a new issue