diff --git a/vsp.py b/vsp.py index 8383a89..4aca288 100644 --- a/vsp.py +++ b/vsp.py @@ -43,10 +43,10 @@ def has_vsp(model: Model, impfunction: ModelFunction, top = model.ordering.top() bottom = model.ordering.bottom() + # Cache of closures C: Dict[ModelValue, Set[ModelValue]] = {} for x in model.designated_values: - # Discard ({⊥} ∪ A', B) subalgebras if bottom is not None and x == bottom: continue @@ -55,19 +55,31 @@ def has_vsp(model: Model, impfunction: ModelFunction, if top is not None and negation_defined and x == top: continue - if x not in C: - C[x] = model_closure({x,}, model.logical_operations, None) - Xs = C[x] + candidate_ys = [y for y in model.designated_values if impfunction(x, y) not in model.designated_values] + + if len(candidate_ys) == 0: + continue + + carrier_set_left: Set[ModelValue] = model_closure(C.get(x, {x,}), model.logical_operations, bottom) + C[x] = carrier_set_left # Discard ({⊥} ∪ A', B) subalgebras - if bottom is not None and bottom in Xs: + if bottom is not None and bottom in carrier_set_left: continue # Discard ({⊤} ∪ A', B) subalgebras when negation is defined - if top is not None and negation_defined and top in Xs: + if top is not None and negation_defined and top in carrier_set_left: continue + + for y in candidate_ys: + # Discard ({a} ∪ A', {b} ∪ B') subalgebras when a <= b + if model.ordering.is_lt(x, y): + continue + + # Discard ({a} ∪ A', {b} ∪ B') subalgebras when b <= a and negation is defined + if negation_defined and model.ordering.is_lt(y, x): + continue - for y in model.designated_values - Xs: # Discard (A, {⊤} ∪ B') subalgebras if top is not None and y == top: @@ -77,36 +89,30 @@ def has_vsp(model: Model, impfunction: ModelFunction, if bottom is not None and negation_defined and y == bottom: continue - # Discard ({a} ∪ A', {b} ∪ B') subalgebras when a <= b - if model.ordering.is_lt(x, y): - continue - - # Discard ({a} ∪ A', {b} ∪ B') subalgebras when b <= a and negation is defined - if negation_defined and model.ordering.is_lt(y, x): - continue - - if y not in C: - C[y] = model_closure({y,}, model.logical_operations, None) - Ys = C[y] + carrier_set_right: Set[ModelValue] = model_closure(C.get(y, {y,}), model.logical_operations, top) + C[y] = carrier_set_right # Discard (A, {⊤} ∪ B') subalgebras - if top is not None and top in Ys: + if top is not None and top in carrier_set_right: continue # Discard (A, {⊥} ∪ B') subalgebras when negation is defined - if bottom is not None and negation_defined and bottom in Ys: + if bottom is not None and negation_defined and bottom in carrier_set_right: continue - if not Xs.isdisjoint(Ys): + # Discard subalgebras that intersect + if not carrier_set_left.isdisjoint(carrier_set_right): continue + # Check whether for all pairs in the subalgebra, + # that implication is falsified. falsified = True - for (xi, yi) in product(Xs, Ys): - if impfunction(xi, yi) in model.designated_values: + for (x2, y2) in product(carrier_set_left, carrier_set_right): + if impfunction(x2, y2) in model.designated_values: falsified = False break if falsified: - return VSP_Result(True, model.name, Xs, Ys) + return VSP_Result(True, model.name, carrier_set_left, carrier_set_right) return VSP_Result(False, model.name)