rltorch/examples/acrobot_a2c.py

159 lines
5 KiB
Python
Raw Normal View History

2019-01-31 23:34:32 -05:00
import gym
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import rltorch
import rltorch.network as rn
import rltorch.memory as M
import rltorch.env as E
from rltorch.action_selector import StochasticSelector
2019-01-31 23:34:32 -05:00
from tensorboardX import SummaryWriter
import torch.multiprocessing as mp
import signal
from copy import deepcopy
2019-01-31 23:34:32 -05:00
class Value(nn.Module):
def __init__(self, state_size):
2019-01-31 23:34:32 -05:00
super(Value, self).__init__()
self.state_size = state_size
self.fc1 = rn.NoisyLinear(state_size, 64)
self.fc_norm = nn.LayerNorm(64)
self.fc2 = rn.NoisyLinear(64, 64)
self.fc2_norm = nn.LayerNorm(64)
self.fc3 = rn.NoisyLinear(64, 1)
def forward(self, x):
x = F.relu(self.fc_norm(self.fc1(x)))
x = F.relu(self.fc2_norm(self.fc2(x)))
x = self.fc3(x)
return x
class Policy(nn.Module):
def __init__(self, state_size, action_size):
super(Policy, self).__init__()
self.state_size = state_size
2019-01-31 23:34:32 -05:00
self.action_size = action_size
2019-01-31 23:34:32 -05:00
self.fc1 = rn.NoisyLinear(state_size, 64)
2019-02-11 10:23:11 -05:00
self.fc_norm = nn.LayerNorm(64)
self.fc2 = rn.NoisyLinear(64, 64)
self.fc2_norm = nn.LayerNorm(64)
self.fc3 = rn.NoisyLinear(64, action_size)
# self.fc3_norm = nn.LayerNorm(action_size)
2019-01-31 23:34:32 -05:00
# self.value_fc = rn.NoisyLinear(64, 64)
# self.value_fc_norm = nn.LayerNorm(64)
# self.value = rn.NoisyLinear(64, 1)
2019-01-31 23:34:32 -05:00
# self.advantage_fc = rn.NoisyLinear(64, 64)
# self.advantage_fc_norm = nn.LayerNorm(64)
# self.advantage = rn.NoisyLinear(64, action_size)
2019-01-31 23:34:32 -05:00
def forward(self, x):
2019-02-11 10:23:11 -05:00
x = F.relu(self.fc_norm(self.fc1(x)))
x = F.relu(self.fc2_norm(self.fc2(x)))
x = F.softmax(self.fc3(x), dim = 1)
2019-01-31 23:34:32 -05:00
# state_value = F.relu(self.value_fc_norm(self.value_fc(x)))
# state_value = self.value(state_value)
2019-01-31 23:34:32 -05:00
# advantage = F.relu(self.advantage_fc_norm(self.advantage_fc(x)))
# advantage = self.advantage(advantage)
2019-01-31 23:34:32 -05:00
# x = F.softmax(state_value + advantage - advantage.mean(), dim = 1)
2019-01-31 23:34:32 -05:00
return x
config = {}
config['seed'] = 901
config['environment_name'] = 'Acrobot-v1'
config['memory_size'] = 2000
config['total_training_episodes'] = 500
2019-01-31 23:34:32 -05:00
config['total_evaluation_episodes'] = 10
config['batch_size'] = 32
config['learning_rate'] = 1e-3
config['target_sync_tau'] = 1e-1
config['discount_rate'] = 0.99
config['replay_skip'] = 0
# How many episodes between printing out the episode stats
config['print_stat_n_eps'] = 1
config['disable_cuda'] = False
def train(runner, agent, config, logger = None, logwriter = None):
2019-01-31 23:34:32 -05:00
finished = False
while not finished:
runner.run()
2019-01-31 23:34:32 -05:00
agent.learn()
if logwriter is not None:
agent.value_net.log_named_parameters()
agent.policy_net.log_named_parameters()
logwriter.write(logger)
finished = runner.episode_num > config['total_training_episodes']
if __name__ == "__main__":
torch.multiprocessing.set_sharing_strategy('file_system') # To not hit file descriptor memory limit
# Setting up the environment
rltorch.set_seed(config['seed'])
print("Setting up environment...", end = " ")
env = E.TorchWrap(gym.make(config['environment_name']))
env.seed(config['seed'])
print("Done.")
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
# Logging
logger = rltorch.log.Logger()
logwriter = rltorch.log.LogWriter(SummaryWriter())
# Setting up the networks
device = torch.device("cuda:0" if torch.cuda.is_available() and not config['disable_cuda'] else "cpu")
policy_net = rn.Network(Policy(state_size, action_size),
torch.optim.Adam, config, device = device, name = "Policy")
value_net = rn.Network(Value(state_size),
torch.optim.Adam, config, device = device, name = "DQN")
# Memory stores experiences for later training
memory = M.EpisodeMemory()
# Actor takes a net and uses it to produce actions from given states
actor = StochasticSelector(policy_net, action_size, memory, device = device)
# Agent is what performs the training
# agent = rltorch.agents.REINFORCEAgent(net, memory, config, target_net = target_net, logger = logger)
agent = rltorch.agents.A2CSingleAgent(policy_net, value_net, memory, config, logger = logger)
# Runner performs one episode in the environment
runner = rltorch.env.EnvironmentEpisodeSync(env, actor, config, name = "Training", memory = memory, logwriter = logwriter)
2019-01-31 23:34:32 -05:00
print("Training...")
train(runner, agent, config, logger = logger, logwriter = logwriter)
# For profiling...
# import cProfile
# cProfile.run('train(runner, agent, config, logger = logger, logwriter = logwriter )')
# python -m torch.utils.bottleneck /path/to/source/script.py [args] is also a good solution...
print("Training Finished.")
print("Evaluating...")
rltorch.env.simulateEnvEps(env, actor, config, total_episodes = config['total_evaluation_episodes'], logger = logger, name = "Evaluation")
print("Evaulations Done.")
logwriter.close() # We don't need to write anything out to disk anymore