Updated examples to have new features
This commit is contained in:
		
							parent
							
								
									fe97a9b78d
								
							
						
					
					
						commit
						5094ed53af
					
				
					 2 changed files with 45 additions and 17 deletions
				
			
		| 
						 | 
				
			
			@ -18,21 +18,24 @@ class Value(nn.Module):
 | 
			
		|||
    self.action_size = action_size
 | 
			
		||||
    
 | 
			
		||||
    self.fc1 = rn.NoisyLinear(state_size, 64)
 | 
			
		||||
    self.fc_norm = nn.LayerNorm(64)
 | 
			
		||||
    
 | 
			
		||||
    self.value_fc = rn.NoisyLinear(64, 64)
 | 
			
		||||
    self.value_fc_norm = nn.LayerNorm(64)
 | 
			
		||||
    self.value = rn.NoisyLinear(64, 1)
 | 
			
		||||
    
 | 
			
		||||
    self.advantage_fc = rn.NoisyLinear(64, 64)
 | 
			
		||||
    self.advantage_fc_norm = nn.LayerNorm(64)
 | 
			
		||||
    self.advantage = rn.NoisyLinear(64, action_size)
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
  def forward(self, x):
 | 
			
		||||
    x = F.relu(self.fc1(x))
 | 
			
		||||
    x = F.relu(self.fc_norm(self.fc1(x)))
 | 
			
		||||
    
 | 
			
		||||
    state_value = F.relu(self.value_fc(x))
 | 
			
		||||
    state_value = F.relu(self.value_fc_norm(self.value_fc(x)))
 | 
			
		||||
    state_value = self.value(state_value)
 | 
			
		||||
    
 | 
			
		||||
    advantage = F.relu(self.advantage_fc(x))
 | 
			
		||||
    advantage = F.relu(self.advantage_fc_norm(self.advantage_fc(x)))
 | 
			
		||||
    advantage = self.advantage(advantage)
 | 
			
		||||
    
 | 
			
		||||
    x = state_value + advantage - advantage.mean()
 | 
			
		||||
| 
						 | 
				
			
			@ -49,12 +52,20 @@ config['total_evaluation_episodes'] = 10
 | 
			
		|||
config['batch_size'] = 32
 | 
			
		||||
config['learning_rate'] = 1e-3
 | 
			
		||||
config['target_sync_tau'] = 1e-1
 | 
			
		||||
config['weight_decay'] = 1e-5
 | 
			
		||||
config['discount_rate'] = 0.99
 | 
			
		||||
config['replay_skip'] = 0
 | 
			
		||||
# How many episodes between printing out the episode stats
 | 
			
		||||
config['print_stat_n_eps'] = 1
 | 
			
		||||
config['disable_cuda'] = False
 | 
			
		||||
# Prioritized vs Random Sampling
 | 
			
		||||
# 0 - Random sampling
 | 
			
		||||
# 1 - Only the highest prioirities
 | 
			
		||||
config['prioritized_replay_sampling_priority'] = 0.6
 | 
			
		||||
# How important are the weights for the loss?
 | 
			
		||||
# 0 - Treat all losses equally
 | 
			
		||||
# 1 - Lower the importance of high losses
 | 
			
		||||
# Should ideally start from 0 and move your way to 1 to prevent overfitting
 | 
			
		||||
config['prioritized_replay_weight_importance'] = rltorch.scheduler.ExponentialScheduler(initial_value = 0.4, end_value = 1, iterations = 5000)
 | 
			
		||||
 | 
			
		||||
def train(runner, agent, config, logwriter = None):
 | 
			
		||||
    finished = False
 | 
			
		||||
| 
						 | 
				
			
			@ -96,7 +107,8 @@ target_net = rn.TargetNetwork(net, device = device)
 | 
			
		|||
# Actor takes a net and uses it to produce actions from given states
 | 
			
		||||
actor = ArgMaxSelector(net, action_size, device = device)
 | 
			
		||||
# Memory stores experiences for later training
 | 
			
		||||
memory = M.ReplayMemory(capacity = config['memory_size'])
 | 
			
		||||
memory = M.PrioritizedReplayMemory(capacity = config['memory_size'], alpha = config['prioritized_replay_sampling_priority'])
 | 
			
		||||
# memory = M.ReplayMemory(capacity = config['memory_size'])
 | 
			
		||||
 | 
			
		||||
# Runner performs a certain number of steps in the environment
 | 
			
		||||
runner = rltorch.mp.EnvironmentRun(env, actor, config, memory = memory, logger = logger, name = "Training")
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -17,31 +17,37 @@ class Value(nn.Module):
 | 
			
		|||
    self.action_size = action_size
 | 
			
		||||
    
 | 
			
		||||
    self.conv1 = nn.Conv2d(4, 32, kernel_size = (8, 8), stride = (4, 4))
 | 
			
		||||
    self.conv_norm1 = nn.LayerNorm([32, 19, 19])
 | 
			
		||||
    self.conv2 = nn.Conv2d(32, 64, kernel_size = (4, 4), stride = (2, 2))    
 | 
			
		||||
    self.conv_norm2 = nn.LayerNorm([64, 8, 8])
 | 
			
		||||
    self.conv3 = nn.Conv2d(64, 64, kernel_size = (3, 3), stride = (1, 1))
 | 
			
		||||
    self.conv_norm3 = nn.LayerNorm([64, 6, 6])
 | 
			
		||||
    
 | 
			
		||||
    self.fc1 = rn.NoisyLinear(64 * 6 * 6, 384)
 | 
			
		||||
    self.fc_norm = nn.LayerNorm(384)
 | 
			
		||||
    
 | 
			
		||||
    self.value_fc = rn.NoisyLinear(384, 384)
 | 
			
		||||
    self.value_fc_norm = nn.LayerNorm(384)
 | 
			
		||||
    self.value = rn.NoisyLinear(384, 1)
 | 
			
		||||
    
 | 
			
		||||
    self.advantage_fc = rn.NoisyLinear(384, 384)
 | 
			
		||||
    self.advantage_fc_norm = nn.LayerNorm(384)
 | 
			
		||||
    self.advantage = rn.NoisyLinear(384, action_size)
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
  def forward(self, x):
 | 
			
		||||
    x = F.relu(self.conv1(x))   
 | 
			
		||||
    x = F.relu(self.conv2(x))
 | 
			
		||||
    x = F.relu(self.conv3(x))
 | 
			
		||||
    x = F.relu(self.conv_norm1(self.conv1(x)))
 | 
			
		||||
    x = F.relu(self.conv_norm2(self.conv2(x)))
 | 
			
		||||
    x = F.relu(self.conv_norm3(self.conv3(x)))
 | 
			
		||||
    
 | 
			
		||||
    # Makes batch_size dimension again
 | 
			
		||||
    x = x.view(-1, 64 * 6 * 6)
 | 
			
		||||
    x = F.relu(self.fc1(x))
 | 
			
		||||
    x = F.relu(self.fc_norm(self.fc1(x)))
 | 
			
		||||
    
 | 
			
		||||
    state_value = F.relu(self.value_fc(x))
 | 
			
		||||
    state_value = F.relu(self.value_fc_norm(self.value_fc(x)))
 | 
			
		||||
    state_value = self.value(state_value)
 | 
			
		||||
    
 | 
			
		||||
    advantage = F.relu(self.advantage_fc(x))
 | 
			
		||||
    advantage = F.relu(self.advantage_fc_norm(self.advantage_fc(x)))
 | 
			
		||||
    advantage = self.advantage(advantage)
 | 
			
		||||
    
 | 
			
		||||
    x = state_value + advantage - advantage.mean()
 | 
			
		||||
| 
						 | 
				
			
			@ -52,24 +58,34 @@ class Value(nn.Module):
 | 
			
		|||
    
 | 
			
		||||
    return x
 | 
			
		||||
    
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
config = {}
 | 
			
		||||
config['seed'] = 901
 | 
			
		||||
config['environment_name'] = 'PongNoFrameskip-v4'
 | 
			
		||||
config['memory_size'] = 4000
 | 
			
		||||
config['total_training_episodes'] = 50
 | 
			
		||||
config['memory_size'] = 5000
 | 
			
		||||
config['total_training_episodes'] = 500
 | 
			
		||||
config['total_evaluation_episodes'] = 10
 | 
			
		||||
config['learning_rate'] = 1e-4
 | 
			
		||||
config['target_sync_tau'] = 1e-3
 | 
			
		||||
config['weight_decay'] = 1e-8
 | 
			
		||||
config['discount_rate'] = 0.999
 | 
			
		||||
config['discount_rate'] = 0.99
 | 
			
		||||
config['exploration_rate'] = rltorch.scheduler.ExponentialScheduler(initial_value = 0.1, end_value = 0.01, iterations = 5000)
 | 
			
		||||
config['replay_skip'] = 4
 | 
			
		||||
config['batch_size'] = 32 * (config['replay_skip'] + 1)
 | 
			
		||||
# How many episodes between printing out the episode stats
 | 
			
		||||
config['print_stat_n_eps'] = 1 
 | 
			
		||||
config['disable_cuda'] = False
 | 
			
		||||
# Prioritized vs Random Sampling
 | 
			
		||||
# 0 - Random sampling
 | 
			
		||||
# 1 - Only the highest prioirities
 | 
			
		||||
config['prioritized_replay_sampling_priority'] = 0.6
 | 
			
		||||
# How important are the weights for the loss?
 | 
			
		||||
# 0 - Treat all losses equally
 | 
			
		||||
# 1 - Lower the importance of high losses
 | 
			
		||||
# Should ideally start from 0 and move your way to 1 to prevent overfitting
 | 
			
		||||
config['prioritized_replay_weight_importance'] = rltorch.scheduler.ExponentialScheduler(initial_value = 0.4, end_value = 1, iterations = 5000)
 | 
			
		||||
 | 
			
		||||
def train(runner, agent, config, logwriter = None):
 | 
			
		||||
    finished = False
 | 
			
		||||
| 
						 | 
				
			
			@ -113,7 +129,7 @@ target_net = rn.TargetNetwork(net, device = device)
 | 
			
		|||
# Actor takes a network and uses it to produce actions from given states
 | 
			
		||||
actor = ArgMaxSelector(net, action_size, device = device)
 | 
			
		||||
# Memory stores experiences for later training
 | 
			
		||||
memory = M.ReplayMemory(capacity = config['memory_size'])
 | 
			
		||||
memory = M.PrioritizedReplayMemory(capacity = config['memory_size'], alpha = config['prioritized_replay_sampling_priority'])
 | 
			
		||||
 | 
			
		||||
# Runner performs a certain number of steps in the environment
 | 
			
		||||
runner = rltorch.mp.EnvironmentRun(env, actor, config, memory = memory, logger = logger, name = "Training")
 | 
			
		||||
| 
						 | 
				
			
			@ -137,4 +153,4 @@ print("Evaluating...")
 | 
			
		|||
rltorch.env.simulateEnvEps(env, actor, config, total_episodes = config['total_evaluation_episodes'], logger = logger, name = "Evaluation")
 | 
			
		||||
print("Evaulations Done.")
 | 
			
		||||
 | 
			
		||||
logwriter.close() # We don't need to write anything out to disk anymore
 | 
			
		||||
logwriter.close() # We don't need to write anything out to disk anymore
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue