Fixed parallel implementation of getting experiences by using a queue
This commit is contained in:
		
							parent
							
								
									5094ed53af
								
							
						
					
					
						commit
						115543d201
					
				
					 4 changed files with 33 additions and 22 deletions
				
			
		| 
						 | 
				
			
			@ -9,14 +9,14 @@ import rltorch.memory as M
 | 
			
		|||
import rltorch.env as E
 | 
			
		||||
from rltorch.action_selector import ArgMaxSelector
 | 
			
		||||
from tensorboardX import SummaryWriter
 | 
			
		||||
 | 
			
		||||
import torch.multiprocessing as mp
 | 
			
		||||
 | 
			
		||||
class Value(nn.Module):
 | 
			
		||||
  def __init__(self, state_size, action_size):
 | 
			
		||||
    super(Value, self).__init__()
 | 
			
		||||
    self.state_size = state_size
 | 
			
		||||
    self.action_size = action_size
 | 
			
		||||
    
 | 
			
		||||
 | 
			
		||||
    self.fc1 = rn.NoisyLinear(state_size, 64)
 | 
			
		||||
    self.fc_norm = nn.LayerNorm(64)
 | 
			
		||||
    
 | 
			
		||||
| 
						 | 
				
			
			@ -28,7 +28,6 @@ class Value(nn.Module):
 | 
			
		|||
    self.advantage_fc_norm = nn.LayerNorm(64)
 | 
			
		||||
    self.advantage = rn.NoisyLinear(64, action_size)
 | 
			
		||||
 | 
			
		||||
  
 | 
			
		||||
  def forward(self, x):
 | 
			
		||||
    x = F.relu(self.fc_norm(self.fc1(x)))
 | 
			
		||||
    
 | 
			
		||||
| 
						 | 
				
			
			@ -67,13 +66,16 @@ config['prioritized_replay_sampling_priority'] = 0.6
 | 
			
		|||
# Should ideally start from 0 and move your way to 1 to prevent overfitting
 | 
			
		||||
config['prioritized_replay_weight_importance'] = rltorch.scheduler.ExponentialScheduler(initial_value = 0.4, end_value = 1, iterations = 5000)
 | 
			
		||||
 | 
			
		||||
def train(runner, agent, config, logwriter = None):
 | 
			
		||||
def train(runner, agent, config, logwriter = None, memory = None):
 | 
			
		||||
    finished = False
 | 
			
		||||
    episode_num = 1
 | 
			
		||||
    memory_queue = mp.Queue(maxsize = config['replay_skip'] + 1)
 | 
			
		||||
    while not finished:
 | 
			
		||||
        runner.run(config['replay_skip'] + 1, printstat = runner.episode_num % config['print_stat_n_eps'] == 0)
 | 
			
		||||
        runner.run(config['replay_skip'] + 1, printstat = runner.episode_num % config['print_stat_n_eps'] == 0, memory = memory_queue)
 | 
			
		||||
        agent.learn()
 | 
			
		||||
        runner.join()
 | 
			
		||||
        for i in range(config['replay_skip'] + 1):
 | 
			
		||||
            memory.append(*memory_queue.get())
 | 
			
		||||
        # When the episode number changes, write out the weight histograms
 | 
			
		||||
        if logwriter is not None and episode_num < runner.episode_num:
 | 
			
		||||
            episode_num = runner.episode_num
 | 
			
		||||
| 
						 | 
				
			
			@ -84,6 +86,7 @@ def train(runner, agent, config, logwriter = None):
 | 
			
		|||
        finished = runner.episode_num > config['total_training_episodes']
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
torch.multiprocessing.set_sharing_strategy('file_system') # To not hit file descriptor memory limit
 | 
			
		||||
# Setting up the environment
 | 
			
		||||
rltorch.set_seed(config['seed'])
 | 
			
		||||
print("Setting up environment...", end = " ")
 | 
			
		||||
| 
						 | 
				
			
			@ -98,11 +101,14 @@ action_size = env.action_space.n
 | 
			
		|||
logger = rltorch.log.Logger()
 | 
			
		||||
logwriter = rltorch.log.LogWriter(logger, SummaryWriter())
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
# Setting up the networks
 | 
			
		||||
device = torch.device("cuda:0" if torch.cuda.is_available() and not config['disable_cuda'] else "cpu")
 | 
			
		||||
net = rn.Network(Value(state_size, action_size), 
 | 
			
		||||
                    torch.optim.Adam, config, device = device, logger = logger, name = "DQN")
 | 
			
		||||
target_net = rn.TargetNetwork(net, device = device)
 | 
			
		||||
net.model.share_memory()
 | 
			
		||||
target_net.model.share_memory()
 | 
			
		||||
 | 
			
		||||
# Actor takes a net and uses it to produce actions from given states
 | 
			
		||||
actor = ArgMaxSelector(net, action_size, device = device)
 | 
			
		||||
| 
						 | 
				
			
			@ -111,14 +117,14 @@ memory = M.PrioritizedReplayMemory(capacity = config['memory_size'], alpha = con
 | 
			
		|||
# memory = M.ReplayMemory(capacity = config['memory_size'])
 | 
			
		||||
 | 
			
		||||
# Runner performs a certain number of steps in the environment
 | 
			
		||||
runner = rltorch.mp.EnvironmentRun(env, actor, config, memory = memory, logger = logger, name = "Training")
 | 
			
		||||
runner = rltorch.mp.EnvironmentRun(env, actor, config, logger = logger, name = "Training")
 | 
			
		||||
runner.start()
 | 
			
		||||
 | 
			
		||||
# Agent is what performs the training
 | 
			
		||||
agent = rltorch.agents.DQNAgent(net, memory, config, target_net = target_net, logger = logger)
 | 
			
		||||
   
 | 
			
		||||
print("Training...")
 | 
			
		||||
train(runner, agent, config, logwriter = logwriter) 
 | 
			
		||||
train(runner, agent, config, logwriter = logwriter, memory = memory) 
 | 
			
		||||
 | 
			
		||||
# For profiling...
 | 
			
		||||
# import cProfile
 | 
			
		||||
| 
						 | 
				
			
			@ -132,4 +138,4 @@ print("Evaluating...")
 | 
			
		|||
rltorch.env.simulateEnvEps(env, actor, config, total_episodes = config['total_evaluation_episodes'], logger = logger, name = "Evaluation")
 | 
			
		||||
print("Evaulations Done.")
 | 
			
		||||
 | 
			
		||||
logwriter.close() # We don't need to write anything out to disk anymore
 | 
			
		||||
logwriter.close() # We don't need to write anything out to disk anymore
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -9,6 +9,7 @@ import rltorch.memory as M
 | 
			
		|||
import rltorch.env as E
 | 
			
		||||
from rltorch.action_selector import ArgMaxSelector
 | 
			
		||||
from tensorboardX import SummaryWriter
 | 
			
		||||
import torch.multiprocessing as mp
 | 
			
		||||
 | 
			
		||||
class Value(nn.Module):
 | 
			
		||||
  def __init__(self, state_size, action_size):
 | 
			
		||||
| 
						 | 
				
			
			@ -87,13 +88,16 @@ config['prioritized_replay_sampling_priority'] = 0.6
 | 
			
		|||
# Should ideally start from 0 and move your way to 1 to prevent overfitting
 | 
			
		||||
config['prioritized_replay_weight_importance'] = rltorch.scheduler.ExponentialScheduler(initial_value = 0.4, end_value = 1, iterations = 5000)
 | 
			
		||||
 | 
			
		||||
def train(runner, agent, config, logwriter = None):
 | 
			
		||||
def train(runner, agent, config, logwriter = None, memory = None):
 | 
			
		||||
    finished = False
 | 
			
		||||
    episode_num = 1
 | 
			
		||||
    memory_queue = mp.Queue(maxsize = config['replay_skip'] + 1)
 | 
			
		||||
    while not finished:
 | 
			
		||||
        runner.run(config['replay_skip'] + 1, printstat = runner.episode_num % config['print_stat_n_eps'] == 0)
 | 
			
		||||
        runner.run(config['replay_skip'] + 1, printstat = runner.episode_num % config['print_stat_n_eps'] == 0, memory = memory_queue)
 | 
			
		||||
        agent.learn()
 | 
			
		||||
        runner.join()
 | 
			
		||||
        for i in range(config['replay_skip'] + 1):
 | 
			
		||||
          memory.append(*memory_queue.get())
 | 
			
		||||
        # When the episode number changes, write out the weight histograms
 | 
			
		||||
        if logwriter is not None and episode_num < runner.episode_num:
 | 
			
		||||
            episode_num = runner.episode_num
 | 
			
		||||
| 
						 | 
				
			
			@ -104,6 +108,7 @@ def train(runner, agent, config, logwriter = None):
 | 
			
		|||
        finished = runner.episode_num > config['total_training_episodes']
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
torch.multiprocessing.set_sharing_strategy('file_system') # To not hit file descriptor memory limit
 | 
			
		||||
rltorch.set_seed(config['seed'])
 | 
			
		||||
print("Setting up environment...", end = " ")
 | 
			
		||||
env = E.FrameStack(E.TorchWrap(
 | 
			
		||||
| 
						 | 
				
			
			@ -125,6 +130,8 @@ device = torch.device("cuda:0" if torch.cuda.is_available() and not config['disa
 | 
			
		|||
net = rn.Network(Value(state_size, action_size), 
 | 
			
		||||
                    torch.optim.Adam, config, device = device, logger = logger, name = "DQN")
 | 
			
		||||
target_net = rn.TargetNetwork(net, device = device)
 | 
			
		||||
net.model.share_memory()
 | 
			
		||||
target_net.model.share_memory()
 | 
			
		||||
 | 
			
		||||
# Actor takes a network and uses it to produce actions from given states
 | 
			
		||||
actor = ArgMaxSelector(net, action_size, device = device)
 | 
			
		||||
| 
						 | 
				
			
			@ -132,14 +139,14 @@ actor = ArgMaxSelector(net, action_size, device = device)
 | 
			
		|||
memory = M.PrioritizedReplayMemory(capacity = config['memory_size'], alpha = config['prioritized_replay_sampling_priority'])
 | 
			
		||||
 | 
			
		||||
# Runner performs a certain number of steps in the environment
 | 
			
		||||
runner = rltorch.mp.EnvironmentRun(env, actor, config, memory = memory, logger = logger, name = "Training")
 | 
			
		||||
runner = rltorch.mp.EnvironmentRun(env, actor, config, logger = logger, name = "Training")
 | 
			
		||||
runner.start()
 | 
			
		||||
 | 
			
		||||
# Agent is what performs the training
 | 
			
		||||
agent = rltorch.agents.DQNAgent(net, memory, config, target_net = target_net, logger = logger)
 | 
			
		||||
   
 | 
			
		||||
print("Training...")
 | 
			
		||||
train(runner, agent, config, logwriter = logwriter) 
 | 
			
		||||
train(runner, agent, config, logwriter = logwriter, memory = memory) 
 | 
			
		||||
 | 
			
		||||
# For profiling...
 | 
			
		||||
# import cProfile
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -2,17 +2,16 @@ from copy import deepcopy
 | 
			
		|||
import torch.multiprocessing as mp
 | 
			
		||||
 | 
			
		||||
class EnvironmentEpisode(mp.Process):
 | 
			
		||||
  def __init__(self, env, actor, config, memory = None, logger = None, name = ""):
 | 
			
		||||
  def __init__(self, env, actor, config, logger = None, name = ""):
 | 
			
		||||
    super(EnvironmentEpisode, self).__init__()
 | 
			
		||||
    self.env = env
 | 
			
		||||
    self.actor = actor
 | 
			
		||||
    self.memory = memory
 | 
			
		||||
    self.config = deepcopy(config)
 | 
			
		||||
    self.logger = logger
 | 
			
		||||
    self.name = name
 | 
			
		||||
    self.episode_num = 1
 | 
			
		||||
 | 
			
		||||
  def run(self, printstat = False):
 | 
			
		||||
  def run(self, printstat = False, memory = None):
 | 
			
		||||
    state = self.env.reset()
 | 
			
		||||
    done = False
 | 
			
		||||
    episode_reward = 0
 | 
			
		||||
| 
						 | 
				
			
			@ -21,8 +20,8 @@ class EnvironmentEpisode(mp.Process):
 | 
			
		|||
      next_state, reward, done, _ = self.env.step(action)
 | 
			
		||||
 | 
			
		||||
      episode_reward = episode_reward + reward
 | 
			
		||||
      if self.memory is not None:
 | 
			
		||||
        self.memory.append(state, action, reward, next_state, done)
 | 
			
		||||
      if memory is not None:
 | 
			
		||||
        memory.put((state, action, reward, next_state, done))
 | 
			
		||||
      state = next_state
 | 
			
		||||
 | 
			
		||||
    if printstat:
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -2,11 +2,10 @@ from copy import deepcopy
 | 
			
		|||
import torch.multiprocessing as mp
 | 
			
		||||
 | 
			
		||||
class EnvironmentRun(mp.Process):
 | 
			
		||||
  def __init__(self, env, actor, config, memory = None, logger = None, name = ""):
 | 
			
		||||
  def __init__(self, env, actor, config, logger = None, name = ""):
 | 
			
		||||
    super(EnvironmentRun, self).__init__()
 | 
			
		||||
    self.env = env
 | 
			
		||||
    self.actor = actor
 | 
			
		||||
    self.memory = memory
 | 
			
		||||
    self.config = deepcopy(config)
 | 
			
		||||
    self.logger = logger
 | 
			
		||||
    self.name = name
 | 
			
		||||
| 
						 | 
				
			
			@ -14,15 +13,15 @@ class EnvironmentRun(mp.Process):
 | 
			
		|||
    self.episode_reward = 0
 | 
			
		||||
    self.last_state = env.reset()
 | 
			
		||||
 | 
			
		||||
  def run(self, iterations = 1, printstat = False):
 | 
			
		||||
  def run(self, iterations = 1, printstat = False, memory = None):
 | 
			
		||||
    state = self.last_state
 | 
			
		||||
    for _ in range(iterations):
 | 
			
		||||
      action = self.actor.act(state)
 | 
			
		||||
      next_state, reward, done, _ = self.env.step(action)
 | 
			
		||||
 | 
			
		||||
      self.episode_reward = self.episode_reward + reward
 | 
			
		||||
      if self.memory is not None:
 | 
			
		||||
        self.memory.append(state, action, reward, next_state, done)
 | 
			
		||||
      if memory is not None:
 | 
			
		||||
        memory.put((state, action, reward, next_state, done))
 | 
			
		||||
      state = next_state
 | 
			
		||||
 | 
			
		||||
      if done:
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue