rltorch/examples/acrobot_qep.py

165 lines
5.6 KiB
Python
Raw Normal View History

2019-01-31 23:34:32 -05:00
import gym
import torch
import torch.nn as nn
import torch.nn.functional as F
import rltorch
import rltorch.network as rn
import rltorch.memory as M
import rltorch.env as E
from rltorch.action_selector import StochasticSelector
2020-04-14 15:24:48 -04:00
# from tensorboardX import SummaryWriter
from copy import deepcopy
2020-04-14 15:24:48 -04:00
from rltorch.log import Logger
2019-01-31 23:34:32 -05:00
#
## Networks
#
2019-01-31 23:34:32 -05:00
class Value(nn.Module):
2020-04-14 15:24:48 -04:00
def __init__(self, state_size, action_size):
super(Value, self).__init__()
self.state_size = state_size
self.action_size = action_size
2020-04-14 15:24:48 -04:00
self.fc1 = rn.NoisyLinear(state_size, 255)
self.fc_norm = nn.LayerNorm(255)
2019-01-31 23:34:32 -05:00
2020-04-14 15:24:48 -04:00
self.value_fc = rn.NoisyLinear(255, 255)
self.value_fc_norm = nn.LayerNorm(255)
self.value = rn.NoisyLinear(255, 1)
self.advantage_fc = rn.NoisyLinear(255, 255)
self.advantage_fc_norm = nn.LayerNorm(255)
self.advantage = rn.NoisyLinear(255, action_size)
2019-01-31 23:34:32 -05:00
2020-04-14 15:24:48 -04:00
def forward(self, x):
x = F.relu(self.fc_norm(self.fc1(x)))
2019-01-31 23:34:32 -05:00
2020-04-14 15:24:48 -04:00
state_value = F.relu(self.value_fc_norm(self.value_fc(x)))
state_value = self.value(state_value)
2019-01-31 23:34:32 -05:00
2020-04-14 15:24:48 -04:00
advantage = F.relu(self.advantage_fc_norm(self.advantage_fc(x)))
advantage = self.advantage(advantage)
2019-01-31 23:34:32 -05:00
2020-04-14 15:24:48 -04:00
x = state_value + advantage - advantage.mean()
return x
2019-01-31 23:34:32 -05:00
class Policy(nn.Module):
2020-04-14 15:24:48 -04:00
def __init__(self, state_size, action_size):
super(Policy, self).__init__()
self.state_size = state_size
self.action_size = action_size
2020-04-14 15:24:48 -04:00
self.fc1 = nn.Linear(state_size, 125)
self.fc_norm = nn.LayerNorm(125)
2020-04-14 15:24:48 -04:00
self.fc2 = nn.Linear(125, 125)
self.fc2_norm = nn.LayerNorm(125)
2020-04-14 15:24:48 -04:00
self.action_prob = nn.Linear(125, action_size)
2020-04-14 15:24:48 -04:00
def forward(self, x):
x = F.relu(self.fc_norm(self.fc1(x)))
x = F.relu(self.fc2_norm(self.fc2(x)))
x = F.softmax(self.action_prob(x), dim = 1)
return x
#
## Configuration
#
2019-01-31 23:34:32 -05:00
config = {}
config['seed'] = 901
config['environment_name'] = 'Acrobot-v1'
config['memory_size'] = 2000
config['total_training_episodes'] = 50
config['total_evaluation_episodes'] = 5
2019-01-31 23:34:32 -05:00
config['batch_size'] = 32
config['learning_rate'] = 1e-3
config['target_sync_tau'] = 1e-1
config['discount_rate'] = 0.99
config['replay_skip'] = 0
# How many episodes between printing out the episode stats
config['print_stat_n_eps'] = 1
config['disable_cuda'] = False
2019-02-11 10:23:11 -05:00
# Prioritized vs Random Sampling
# 0 - Random sampling
# 1 - Only the highest prioirities
config['prioritized_replay_sampling_priority'] = 0.6
# How important are the weights for the loss?
# 0 - Treat all losses equally
# 1 - Lower the importance of high losses
# Should ideally start from 0 and move your way to 1 to prevent overfitting
config['prioritized_replay_weight_importance'] = rltorch.scheduler.ExponentialScheduler(initial_value = 0.4, end_value = 1, iterations = 5000)
#
## Training Loop
#
2020-04-14 15:24:48 -04:00
def train(runner, agent, config, logwriter=None):
2019-01-31 23:34:32 -05:00
finished = False
last_episode_num = 1
2019-01-31 23:34:32 -05:00
while not finished:
runner.run(config['replay_skip'] + 1)
2019-01-31 23:34:32 -05:00
agent.learn()
if logwriter is not None:
2020-04-14 15:24:48 -04:00
if last_episode_num < runner.episode_num:
last_episode_num = runner.episode_num
agent.value_net.log_named_parameters()
agent.policy_net.log_named_parameters()
logwriter.write(Logger)
finished = runner.episode_num > config['total_training_episodes']
if __name__ == "__main__":
2020-04-14 15:24:48 -04:00
# Setting up the environment
rltorch.set_seed(config['seed'])
print("Setting up environment...", end = " ")
env = E.TorchWrap(gym.make(config['environment_name']))
env.seed(config['seed'])
print("Done.")
2020-04-14 15:24:48 -04:00
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
2020-04-14 15:24:48 -04:00
# Logging
logwriter = None
# logwriter = rltorch.log.LogWriter(SummaryWriter())
2020-04-14 15:24:48 -04:00
# Setting up the networks
device = torch.device("cuda:0" if torch.cuda.is_available() and not config['disable_cuda'] else "cpu")
config2 = deepcopy(config)
config2['learning_rate'] = 0.01
policy_net = rn.ESNetwork(Policy(state_size, action_size),
torch.optim.Adam, 500, None, config2, sigma=0.1, device=device, name="ES")
value_net = rn.Network(Value(state_size, action_size),
torch.optim.Adam, config, device=device, name="DQN")
target_net = rn.TargetNetwork(value_net, device=device)
2020-04-14 15:24:48 -04:00
# Actor takes a net and uses it to produce actions from given states
actor = StochasticSelector(policy_net, action_size, device=device)
2020-04-14 15:24:48 -04:00
# Memory stores experiences for later training
memory = M.PrioritizedReplayMemory(capacity=config['memory_size'], alpha=config['prioritized_replay_sampling_priority'])
2020-04-14 15:24:48 -04:00
# Runner performs a certain number of steps in the environment
runner = rltorch.env.EnvironmentRunSync(env, actor, config, name="Training", memory=memory, logwriter=logwriter)
2020-04-14 15:24:48 -04:00
# Agent is what performs the training
agent = rltorch.agents.QEPAgent(policy_net, value_net, memory, config, target_value_net=target_net)
2020-04-14 15:24:48 -04:00
print("Training...")
train(runner, agent, config, logwriter=logwriter)
# For profiling...
# import cProfile
2020-04-14 15:24:48 -04:00
# cProfile.run('train(runner, agent, config, logwriter = logwriter )')
# python -m torch.utils.bottleneck /path/to/source/script.py [args] is also a good solution...
2020-04-14 15:24:48 -04:00
print("Training Finished.")
2020-04-14 15:24:48 -04:00
print("Evaluating...")
rltorch.env.simulateEnvEps(env, actor, config, total_episodes = config['total_evaluation_episodes'], name="Evaluation")
print("Evaulations Done.")
2020-04-14 15:24:48 -04:00
# logwriter.close() # We don't need to write anything out to disk anymore