mirror of
https://github.com/Brandon-Rozek/website.git
synced 2024-10-30 01:12:07 -04:00
114 lines
No EOL
3.1 KiB
Markdown
114 lines
No EOL
3.1 KiB
Markdown
---
|
|
date: 2022-11-12 21:27:42-05:00
|
|
draft: false
|
|
math: false
|
|
medium_enabled: true
|
|
medium_post_id: ddffc5b14ef9
|
|
tags:
|
|
- Functional Programming
|
|
- Scala
|
|
title: Immutable Traversals with Unfold
|
|
---
|
|
|
|
Let's consider the following binary tree:
|
|
|
|
```goat
|
|
a
|
|
/ \
|
|
/ \
|
|
b d
|
|
\
|
|
\
|
|
c
|
|
```
|
|
|
|
|
|
|
|
|
|
|
|
We can encode this with the following Scala code:
|
|
|
|
```scala
|
|
final case class BinNode(
|
|
val label: String,
|
|
val left: Option[BinNode],
|
|
val right: Option[BinNode]
|
|
)
|
|
|
|
// Leaf Nodes
|
|
val c_node = BinNode("c", None, None)
|
|
val d_node = BinNode("d", None, None)
|
|
// Rest of nodes
|
|
val b_node = BinNode("b", None, Some(c_node))
|
|
val a_node = BinNode("a", Some(b_node), Some(d_node))
|
|
```
|
|
|
|
For depth first search, an intuitive immutable implementation would be a recursive function.
|
|
|
|
```scala
|
|
// Using Preorder traversal
|
|
def DFS(node: BinNode): Iterator[BinNode] =
|
|
lazy val left_side = node.left.fold(Iterator.empty[BinNode])(DFS)
|
|
lazy val right_side = node.right.fold(Iterator.empty[BinNode])(DFS)
|
|
Iterator(node) ++ left_side ++ right_side
|
|
```
|
|
|
|
Let's evaluate this using our example above:
|
|
|
|
```scala
|
|
DFS(a_node).toList.map(_.label)
|
|
// List(a, b, c, d)
|
|
```
|
|
|
|
The recursive implementation inherently uses the system stack to keep track of the nodes. This means that the last element gets evaluated in each step. Otherwise called last-in-first-out (LIFO). Breadth first search, however, uses a queue based approach where the first one added to the data structure is the first one considered (FIFO).
|
|
|
|
To preserve immutability in our code, we can use `unfold`. Here our state is the queue of nodes.
|
|
|
|
```scala
|
|
def BFS(node: BinNode): Iterator[BinNode] =
|
|
Iterator.unfold(List(node))(q =>
|
|
if q.isEmpty then
|
|
None
|
|
else
|
|
val crnt_node = q.head
|
|
val next_q = q.tail ++ crnt_node.left ++ crnt_node.right
|
|
Some(crnt_node, next_q)
|
|
)
|
|
```
|
|
|
|
Evaluating on our example:
|
|
|
|
```scala
|
|
BFS(a_node).toList.map(_.label)
|
|
// List(a, b, d, c)
|
|
```
|
|
|
|
We can also use `unfold` for the depth first search approach as well. We can replace the list used with a stack.
|
|
|
|
```scala
|
|
import scala.collection.mutable.Stack
|
|
def DFS2(node: BinNode): Iterator[BinNode] =
|
|
Iterator.unfold(Stack(node))(s =>
|
|
if s.isEmpty then
|
|
None
|
|
else
|
|
val crnt_node = s.pop()
|
|
s.pushAll(crnt_node.right)
|
|
s.pushAll(crnt_node.left)
|
|
Some(crnt_node, s)
|
|
)
|
|
```
|
|
|
|
Using a stack introduces some mutability. We can use the immutable list data structure instead, as long as we satisfy the LIFO ordering.
|
|
|
|
```scala
|
|
def DFS3(node: BinNode): Iterator[BinNode] =
|
|
Iterator.unfold(List(node))(s =>
|
|
if s.isEmpty then
|
|
None
|
|
else
|
|
val crnt_node = s.last
|
|
val next_s = s.init ++ crnt_node.right ++ crnt_node.left
|
|
Some(crnt_node, next_s)
|
|
)
|
|
``` |