3.2 KiB
| title | showthedate | math |
|---|---|---|
| Handy Facts about Quadratic Congruences | false | true |
Number of Solutions
For congruences mod 2
Proposition 16.1. Let f(x) = ax^2 + bx + c with a odd, and let \Delta = b^2 - 4ac be the discriminant of f(x). Then,
- If
\Delta \equiv 1(mod8), so thatbis odd andcis even, thenf(x) \equiv 0(mod2) has two solutions - If
\Delta \equiv 5(mod8), so thatbandcare odd, thenf(x) \equiv 0(mod2) has no solutions - If
4 | \Delta, so thatbis even, thenf(x) \equiv 0(mod2) has exactly one solution.
Proposition 16.2. Let p be an odd prime and let a be an integer. Then,
- If
pdoes not dividea, then the congruencex^2 \equiv a(modp) has either two solutions or no solutions. - If
pdividesa, thenx^2 \equiv a(modp) has exactly one solution, namelyx = 0.
Legendre symbol definition. Let p be an odd prime and a any integer. Then the Legendre symbol, written as (\frac{a}{p}) is defined as
(\frac{a}{p}) = \begin{cases}
1, & \text{if x^2 \equiv a (mod p) has exactly two solutions,} \
0, & \text{if x^2 \equiv a (mod p) has exactly one solution,} \
-1, & \text{if x^2 \equiv a (mod p) has no soultions.}
\end{cases}
Properties of Legendre symbol.
-
(\frac{a}{p}) = 0 \iff pdividesa -
(\frac{1}{p}) = 1for every odd primep -
a \equiv b(modp)\implies(\frac{a}{p}) = (\frac{b}{p}) -
(\frac{ab}{p}) = (\frac{a}{p})(\frac{b}{p}) -
If
pis an odd prime then,(\frac{-1}{p}) = \begin{cases} 1, & \text{ifp \equiv 1(mod4)} \ -1, & \text{ ifp \equiv 3(mod4)} \end{cases}
-
If
pis an odd prime then,(\frac{2}{p}) = \begin{cases} 1, & \text{ifp \equiv 1(mod8) orp \equiv 7(mod8)} \ -1, & \text{ ifp \equiv 3(mod8) orp \equiv 5(mod8)} \end{cases}
-
Quadratic Reciprocity Theorem. Let
pandqbe distinct odd primes. Then,(\frac{q}{p}) = \begin{cases} (\frac{p}{q}), & \text{ifp \equiv 1(mod4) orq \equiv 1(mod4)} \ -(\frac{p}{q}), & \text{ ifp \equiv 3(mod4) andq \equiv 3(mod4)} \end{cases}
Procedure
When p is an odd prime, a quadratic congruence ax^2 + bx + c \equiv 0 (mod p) can be transformed into a specialized form by completing the square.
\begin{align*}
ax^2 + bx + c \equiv 0 \text{ (mod p)} &\iff 4a(ax^2 + bx + c) \equiv 0 \text{ (mod p)} \\
&\iff 4a^2x^2 + 4abx + 4ac \equiv 0 \text{ (mod p)} \\
&\iff 4a^2x^2 + 4abx + 4ac + (b^2 - 4ac) \equiv b^2 - 4ac \text{ (mod p)} \\
&\iff 4a^2x^2 + 4abx + b^2 \equiv b^2 - 4ac \text{ (mod p)} \\
&\iff (2ax+b)^2 \equiv b^2 - 4ac \text{ (mod p)}
\end{align*}
Quadratic Congruences Modulo a prime power
Let a be the solution to f(x) \equiv 0 (mod p) where p is an odd prime. Consider b = pt + a. Then, f(b) \equiv 0 (mod p^2) if f^\prime(a)t \equiv -\frac{f(a)}{p} (mod p).
In general, let a be the solution to f(x) \equiv 0 (mod p^n) where p is an odd prime. Consider b = pt + a. Then, f(b) \equiv 0 (mod p^{n + 1}) if f^\prime(a)t \equiv -\frac{f(a)}{p^n} (mod p)