mirror of
https://github.com/Brandon-Rozek/website.git
synced 2024-11-09 10:40:34 -05:00
1.1 KiB
1.1 KiB
date | draft | math | medium_enabled | tags | title | ||
---|---|---|---|---|---|---|---|
2019-05-21 22:18:21-04:00 | false | true | true |
|
Real Analysis Sequences in Haskell |
In Real Analysis it is useful to look at terms of a sequence. One of the best ways I've found to do this is in believe it or not Haskell. This is mainly for these two reasons
-
Support for infinite data structures
-
Built-in Data Type to keep fractional precision
Code
Let's get started, first let us define a sequence by the following: $$ f(1) = 1, f(2) = 2, f(n) = \frac{1}{2}(f(n - 2) + f(n - 1)) $$ That is equivalent to the following haskell code:
f :: Integral a => a -> Ratio a
f 1 = 1
f 2 = 2
f n = 0.5 * (f (n - 2) + f (n - 1))
Now to generate the sequence we just need to map f
onto the natural numbers.
nsequence = map f [1..]
If you want to look at specific subsequences, such as even or odd:
odd_generator n = 2 * n - 1
odds = map odd_generator [1..]
even_generator n = 2 * n
evens = map odd_generator [1..]
To look at the differences between each term:
diff x = map (\(a, b) -> a - b) $ zip (tail x) (init x)