mirror of
https://github.com/Brandon-Rozek/matmod.git
synced 2026-02-11 08:01:21 +00:00
Compare commits
2 commits
42f063408b
...
6a5c45817a
| Author | SHA1 | Date | |
|---|---|---|---|
| 6a5c45817a | |||
| 53fb674d9a |
1 changed files with 50 additions and 17 deletions
67
model.py
67
model.py
|
|
@ -77,31 +77,64 @@ class ModelFunction:
|
||||||
def __call__(self, *args):
|
def __call__(self, *args):
|
||||||
return self.mapping[args]
|
return self.mapping[args]
|
||||||
|
|
||||||
|
def natural_sort(v: ModelValue):
|
||||||
|
"""
|
||||||
|
Produces a tuple for which when sorted
|
||||||
|
places the model values whose name is numeric first and sorted
|
||||||
|
in numerical order and otherwise puts non-numeric names
|
||||||
|
afterwards and sorted lexographically.
|
||||||
|
|
||||||
|
Example when sorted: (0, 1), (0, 2), (0, 3), (1, "a"), (1, "b")
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
return (0, int(v.name))
|
||||||
|
except ValueError:
|
||||||
|
return (1, v.name)
|
||||||
|
|
||||||
def unary_function_str(f: ModelFunction) -> str:
|
def unary_function_str(f: ModelFunction) -> str:
|
||||||
assert isinstance(f, ModelFunction) and f.arity == 1
|
assert isinstance(f, ModelFunction) and f.arity == 1
|
||||||
sorted_domain = sorted(f.domain, key=lambda v : v.name)
|
sorted_domain = sorted(f.domain, key=natural_sort)
|
||||||
header_line = f" {f.operation_name} | " + " ".join((str(v) for v in sorted_domain))
|
|
||||||
sep_line = "-" + ("-" * len(f.operation_name)) + "-+-" +\
|
# Calculate the maximum width needed for any value
|
||||||
("-" * len(sorted_domain)) +\
|
max_value_width = max(len(str(v)) for v in sorted_domain)
|
||||||
("-" * reduce(lambda sum, v : sum + len(v.name), sorted_domain, 0))
|
|
||||||
data_line = (" " * (len(f.operation_name) + 2)) + "| " + " ".join((str(f.mapping[(v,)]) for v in sorted_domain))
|
# Build header line with proper spacing
|
||||||
|
header_values = " ".join(str(v).rjust(max_value_width) for v in sorted_domain)
|
||||||
|
header_line = f" {f.operation_name} | {header_values}"
|
||||||
|
|
||||||
|
# Calculate separator line length
|
||||||
|
sep_line = "-" * (len(f.operation_name) + 2) + "+" + "-" * (len(header_values) + 1)
|
||||||
|
|
||||||
|
# Build data line with proper spacing
|
||||||
|
data_values = " ".join(str(f.mapping[(v,)]).rjust(max_value_width) for v in sorted_domain)
|
||||||
|
data_line = " " * (len(f.operation_name) + 2) + "| " + data_values
|
||||||
|
|
||||||
return "\n".join((header_line, sep_line, data_line)) + "\n"
|
return "\n".join((header_line, sep_line, data_line)) + "\n"
|
||||||
|
|
||||||
def binary_function_str(f: ModelFunction) -> str:
|
def binary_function_str(f: ModelFunction) -> str:
|
||||||
assert isinstance(f, ModelFunction) and f.arity == 2
|
assert isinstance(f, ModelFunction) and f.arity == 2
|
||||||
sorted_domain = sorted(f.domain, key=lambda v : v.name)
|
sorted_domain = sorted(f.domain, key=natural_sort)
|
||||||
max_col_width = max(chain((len(v.name) for v in sorted_domain), (len(f.operation_name),)))
|
|
||||||
header_line = f" {f.operation_name} " +\
|
# Calculate the maximum width needed for any value
|
||||||
(" " * (max_col_width - len(f.operation_name))) + "| " +\
|
max_value_width = max(len(str(v)) for v in sorted_domain)
|
||||||
" ".join((str(v) for v in sorted_domain))
|
|
||||||
sep_line = "-" + ("-" * max_col_width) + "-+-" +\
|
# Use the max of operation name length and value width for row labels
|
||||||
("-" * len(sorted_domain)) +\
|
max_col_width = max(max_value_width, len(f.operation_name))
|
||||||
("-" * reduce(lambda sum, v : sum + len(v.name), sorted_domain, 0))
|
|
||||||
|
# Build header line with proper spacing
|
||||||
|
header_values = " ".join(str(v).rjust(max_value_width) for v in sorted_domain)
|
||||||
|
header_line = f" {f.operation_name.ljust(max_col_width)} | {header_values}"
|
||||||
|
|
||||||
|
# Calculate separator line length
|
||||||
|
sep_line = "-" * (max_col_width + 2) + "+" + "-" * (len(header_values) + 1)
|
||||||
|
|
||||||
|
# Build data lines with proper spacing
|
||||||
data_lines = ""
|
data_lines = ""
|
||||||
for row_v in sorted_domain:
|
for row_v in sorted_domain:
|
||||||
data_line = f" {row_v.name} | " + " ".join((str(f.mapping[(row_v, col_v)]) for col_v in sorted_domain))
|
row_values = " ".join(str(f.mapping[(row_v, col_v)]).rjust(max_value_width) for col_v in sorted_domain)
|
||||||
|
data_line = f" {str(row_v).ljust(max_col_width)} | {row_values}"
|
||||||
data_lines += data_line + "\n"
|
data_lines += data_line + "\n"
|
||||||
|
|
||||||
return "\n".join((header_line, sep_line, data_lines))
|
return "\n".join((header_line, sep_line, data_lines))
|
||||||
|
|
||||||
Interpretation = Dict[Operation, ModelFunction]
|
Interpretation = Dict[Operation, ModelFunction]
|
||||||
|
|
@ -222,8 +255,8 @@ class Model:
|
||||||
def __str__(self):
|
def __str__(self):
|
||||||
result = ("=" * 25) + f"""
|
result = ("=" * 25) + f"""
|
||||||
Matrix Name: {self.name}
|
Matrix Name: {self.name}
|
||||||
Carrier Set: {set_to_str(self.carrier_set)}
|
Carrier Set: {set_to_str(sorted(self.carrier_set, key=lambda v: natural_sort(v)))}
|
||||||
Designated Values: {set_to_str(self.designated_values)}
|
Designated Values: {set_to_str(sorted(self.designated_values, key=lambda v: natural_sort(v)))}
|
||||||
"""
|
"""
|
||||||
for function in self.logical_operations:
|
for function in self.logical_operations:
|
||||||
result += f"{str(function)}\n"
|
result += f"{str(function)}\n"
|
||||||
|
|
|
||||||
Loading…
Add table
Add a link
Reference in a new issue