mirror of
				https://github.com/Brandon-Rozek/matmod.git
				synced 2025-11-03 03:11:12 +00:00 
			
		
		
		
	Check for top and bottom within subalgebra
This commit is contained in:
		
							parent
							
								
									3b535fdfa5
								
							
						
					
					
						commit
						bed3d09f4a
					
				
					 1 changed files with 30 additions and 19 deletions
				
			
		
							
								
								
									
										49
									
								
								vsp.py
									
										
									
									
									
								
							
							
						
						
									
										49
									
								
								vsp.py
									
										
									
									
									
								
							| 
						 | 
				
			
			@ -38,31 +38,38 @@ def preseed(
 | 
			
		|||
    same_set = candidate_preseed[1] == 0
 | 
			
		||||
    return candidate_preseed[0], same_set
 | 
			
		||||
 | 
			
		||||
def has_top_bottom(subalgebra: Set[ModelValue], mconjunction: Optional[ModelFunction], mdisjunction: Optional[ModelFunction]):
 | 
			
		||||
 | 
			
		||||
def find_top(algebra: Set[ModelValue], mconjunction: Optional[ModelFunction], mdisjunction: Optional[ModelFunction]) -> Optional[ModelValue]:
 | 
			
		||||
    """
 | 
			
		||||
    Checks the subalgebra to see whether it
 | 
			
		||||
    contains a top or bottom element.
 | 
			
		||||
 | 
			
		||||
    Note: This does not compute the closure.
 | 
			
		||||
 | 
			
		||||
    By definition,
 | 
			
		||||
    The top element is any element x where x || x = x
 | 
			
		||||
    The bottom element is any element x where x && x = x
 | 
			
		||||
    Find the top of the order lattice.
 | 
			
		||||
    T || a = T, T && a = a for all a in the carrier set
 | 
			
		||||
    """
 | 
			
		||||
    if mconjunction is None or mdisjunction is None:
 | 
			
		||||
        return False
 | 
			
		||||
        return None
 | 
			
		||||
 | 
			
		||||
    for x in subalgebra:
 | 
			
		||||
        if mconjunction(x, x) == x:
 | 
			
		||||
            # print("Bottom Element Found")
 | 
			
		||||
            return True
 | 
			
		||||
    for x in algebra:
 | 
			
		||||
        for y in algebra:
 | 
			
		||||
            if mdisjunction(x, y) == x and mconjunction(x, y) == y:
 | 
			
		||||
                return x
 | 
			
		||||
 | 
			
		||||
        if mdisjunction(x, x) == x:
 | 
			
		||||
            # print("Top Element Found")
 | 
			
		||||
            return True
 | 
			
		||||
    print("[Warning] Failed to find the top of the lattice")
 | 
			
		||||
    return None
 | 
			
		||||
 | 
			
		||||
    return False
 | 
			
		||||
def find_bottom(algebra: Set[ModelValue], mconjunction: Optional[ModelFunction], mdisjunction: Optional[ModelFunction]) -> Optional[ModelValue]:
 | 
			
		||||
    """
 | 
			
		||||
    Find the bottom of the order lattice
 | 
			
		||||
    F || a = a, F && a = F for all a in the carrier set
 | 
			
		||||
    """
 | 
			
		||||
    if mconjunction is None or mdisjunction is None:
 | 
			
		||||
        return None
 | 
			
		||||
 | 
			
		||||
    for x in algebra:
 | 
			
		||||
        for y in algebra:
 | 
			
		||||
            if mdisjunction(x, y) == y and mconjunction(x, y) == x:
 | 
			
		||||
                return x
 | 
			
		||||
 | 
			
		||||
    print("[Warning] Failed to find the bottom of the lattice")
 | 
			
		||||
    return None
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class VSP_Result:
 | 
			
		||||
| 
						 | 
				
			
			@ -91,6 +98,8 @@ def has_vsp(model: Model, interpretation: Dict[Operation, ModelFunction]) -> VSP
 | 
			
		|||
    impfunction = interpretation[Implication]
 | 
			
		||||
    mconjunction = interpretation.get(Conjunction)
 | 
			
		||||
    mdisjunction = interpretation.get(Disjunction)
 | 
			
		||||
    top = find_top(model.carrier_set, mconjunction, mdisjunction)
 | 
			
		||||
    bottom = find_bottom(model.carrier_set, mconjunction, mdisjunction)
 | 
			
		||||
 | 
			
		||||
    # Compute I the set of tuples (x, y) where
 | 
			
		||||
    # x -> y does not take a designiated value
 | 
			
		||||
| 
						 | 
				
			
			@ -133,7 +142,9 @@ def has_vsp(model: Model, interpretation: Dict[Operation, ModelFunction]) -> VSP
 | 
			
		|||
        # NOTE: Optimization
 | 
			
		||||
        # if either subalgebra contains top or bottom, move
 | 
			
		||||
        # onto the next pair
 | 
			
		||||
        if has_top_bottom(xs, mconjunction, mdisjunction) or has_top_bottom(ys, mconjunction, mdisjunction):
 | 
			
		||||
        if top is not None and (top in xs or top in ys):
 | 
			
		||||
            continue
 | 
			
		||||
        if bottom is not None and (bottom in xs or bottom in ys):
 | 
			
		||||
            continue
 | 
			
		||||
 | 
			
		||||
        # Compute the closure of all operations
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue