mirror of
https://github.com/Brandon-Rozek/matmod.git
synced 2025-05-20 00:23:00 +00:00
Initial commit
This commit is contained in:
commit
9f985740e0
5 changed files with 447 additions and 0 deletions
2
.gitignore
vendored
Normal file
2
.gitignore
vendored
Normal file
|
@ -0,0 +1,2 @@
|
||||||
|
__pycache__
|
||||||
|
.vscode
|
124
R.py
Normal file
124
R.py
Normal file
|
@ -0,0 +1,124 @@
|
||||||
|
"""
|
||||||
|
Modeling the logic R
|
||||||
|
"""
|
||||||
|
from logic import (
|
||||||
|
PropositionalVariable,
|
||||||
|
Rule,
|
||||||
|
Logic,
|
||||||
|
Implication,
|
||||||
|
Conjunction,
|
||||||
|
Negation,
|
||||||
|
Disjunction,
|
||||||
|
Rule,
|
||||||
|
)
|
||||||
|
from model import Model, ModelFunction, ModelValue
|
||||||
|
from generate_model import generate_model
|
||||||
|
|
||||||
|
|
||||||
|
# ===================================================
|
||||||
|
|
||||||
|
# Defining the logic of R
|
||||||
|
|
||||||
|
x = PropositionalVariable("x")
|
||||||
|
y = PropositionalVariable("y")
|
||||||
|
z = PropositionalVariable("z")
|
||||||
|
|
||||||
|
|
||||||
|
implication_rules = {
|
||||||
|
Rule({}, Implication(x, x)),
|
||||||
|
Rule({Implication(x, y), Implication(y, z)}, Implication(x, z)),
|
||||||
|
Rule({}, Implication(Implication(x, Implication(x, y)), Implication(x, y))),
|
||||||
|
Rule({}, Implication(Implication(x, Implication(y, z)), Implication(y, Implication(x, z)))),
|
||||||
|
Rule({}, Implication(Implication(x, y), Implication(Implication(z, x), Implication(z, y)))),
|
||||||
|
Rule({}, Implication(Implication(x, y), Implication(Implication(y, z), Implication(x, z)))),
|
||||||
|
Rule({Implication(x, y), x}, y)
|
||||||
|
}
|
||||||
|
|
||||||
|
negation_rules = {
|
||||||
|
Rule({}, Implication(Negation(Negation(x)), x)),
|
||||||
|
Rule({}, Implication(x, Negation(Negation(x)))),
|
||||||
|
Rule({Implication(x, y)}, Implication(Negation(y), Negation(x))),
|
||||||
|
Rule({}, Implication(Implication(x, y), Implication(Negation(y), Negation(x))))
|
||||||
|
}
|
||||||
|
|
||||||
|
conjunction_rules = {
|
||||||
|
Rule({y, z}, Conjunction(y, z)),
|
||||||
|
Rule({}, Implication(Conjunction(x, y), x)),
|
||||||
|
Rule({}, Implication(Conjunction(x, y), y)),
|
||||||
|
Rule({}, Implication(Conjunction(Implication(x, y), Implication(x, z)), Implication(x, Conjunction(y, z))))
|
||||||
|
}
|
||||||
|
|
||||||
|
disjunction_rules = {
|
||||||
|
Rule({}, Implication(x, Disjunction(x, y))),
|
||||||
|
Rule({}, Implication(y, Disjunction(x, y))),
|
||||||
|
Rule({}, Implication(Conjunction(Implication(x, z), Implication(y, z)), Implication(Disjunction(x, y), z))),
|
||||||
|
Rule({}, Implication(Conjunction(x, Disjunction(y, z)), Disjunction(Conjunction(x, y), Conjunction(x, z))))
|
||||||
|
}
|
||||||
|
|
||||||
|
logic_rules = implication_rules | negation_rules | conjunction_rules | disjunction_rules
|
||||||
|
|
||||||
|
operations = {Negation, Conjunction, Disjunction, Implication}
|
||||||
|
|
||||||
|
R_logic = Logic(operations, logic_rules)
|
||||||
|
|
||||||
|
# ===============================
|
||||||
|
|
||||||
|
# Example Model of R
|
||||||
|
|
||||||
|
|
||||||
|
a0 = ModelValue("a0")
|
||||||
|
a1 = ModelValue("a1")
|
||||||
|
|
||||||
|
carrier_set = {a0, a1}
|
||||||
|
|
||||||
|
mnegation = ModelFunction({
|
||||||
|
a0: a1,
|
||||||
|
a1: a0
|
||||||
|
})
|
||||||
|
|
||||||
|
mimplication = ModelFunction({
|
||||||
|
(a0, a0): a1,
|
||||||
|
(a0, a1): a1,
|
||||||
|
(a1, a0): a0,
|
||||||
|
(a1, a1): a1
|
||||||
|
})
|
||||||
|
|
||||||
|
mconjunction = ModelFunction({
|
||||||
|
(a0, a0): a0,
|
||||||
|
(a0, a1): a0,
|
||||||
|
(a1, a0): a0,
|
||||||
|
(a1, a1): a1
|
||||||
|
})
|
||||||
|
|
||||||
|
mdisjunction = ModelFunction({
|
||||||
|
(a0, a0): a0,
|
||||||
|
(a0, a1): a1,
|
||||||
|
(a1, a0): a1,
|
||||||
|
(a1, a1): a1
|
||||||
|
})
|
||||||
|
|
||||||
|
|
||||||
|
designated_values = {a1}
|
||||||
|
|
||||||
|
logical_operations = {
|
||||||
|
mnegation, mimplication, mconjunction, mdisjunction
|
||||||
|
}
|
||||||
|
R_model_2 = Model(carrier_set, logical_operations, designated_values)
|
||||||
|
|
||||||
|
interpretation = {
|
||||||
|
Negation: mnegation,
|
||||||
|
Conjunction: mconjunction,
|
||||||
|
Disjunction: mdisjunction,
|
||||||
|
Implication: mimplication
|
||||||
|
}
|
||||||
|
|
||||||
|
|
||||||
|
# =================================
|
||||||
|
|
||||||
|
# Generate models of R of a given size
|
||||||
|
|
||||||
|
model_size = 2
|
||||||
|
satisfiable_models = generate_model(R_logic, model_size)
|
||||||
|
|
||||||
|
print(f"There are {len(satisfiable_models)} satisfiable models of element length {model_size}")
|
||||||
|
|
63
generate_model.py
Normal file
63
generate_model.py
Normal file
|
@ -0,0 +1,63 @@
|
||||||
|
"""
|
||||||
|
File which generates all the models
|
||||||
|
"""
|
||||||
|
from logic import Logic
|
||||||
|
from model import ModelValue, Model, satisfiable, ModelFunction
|
||||||
|
from itertools import combinations, chain, product
|
||||||
|
|
||||||
|
def possible_designations(iterable):
|
||||||
|
"""Powerset without the empty and complete set"""
|
||||||
|
s = list(iterable)
|
||||||
|
return chain.from_iterable(combinations(s, r) for r in range(1, len(s)))
|
||||||
|
|
||||||
|
def possible_functions(operation, carrier_set):
|
||||||
|
arity = operation.arity
|
||||||
|
|
||||||
|
inputs = list(product(*(carrier_set for _ in range(arity))))
|
||||||
|
possible_outputs = product(*(carrier_set for _ in range(len(inputs))))
|
||||||
|
for outputs in possible_outputs:
|
||||||
|
assert len(inputs) == len(outputs)
|
||||||
|
new_function = dict()
|
||||||
|
for input, output in zip(inputs, outputs):
|
||||||
|
new_function[input] = output
|
||||||
|
|
||||||
|
yield ModelFunction(new_function, operation.symbol)
|
||||||
|
|
||||||
|
def possible_interpretations(logic, carrier_set):
|
||||||
|
operations = []
|
||||||
|
model_functions = []
|
||||||
|
|
||||||
|
for operation in logic.operations:
|
||||||
|
operations.append(operation)
|
||||||
|
model_functions.append(possible_functions(operation, carrier_set))
|
||||||
|
|
||||||
|
functions_choice = product(*model_functions)
|
||||||
|
for functions in functions_choice:
|
||||||
|
assert len(operations) == len(functions)
|
||||||
|
interpretation = dict()
|
||||||
|
for operation, function in zip(operations, functions):
|
||||||
|
interpretation[operation] = function
|
||||||
|
yield interpretation
|
||||||
|
|
||||||
|
def generate_model(logic: Logic, number_elements: int):
|
||||||
|
carrier_set = {
|
||||||
|
ModelValue("a" + str(i)) for i in range(number_elements)
|
||||||
|
}
|
||||||
|
|
||||||
|
possible_designated_values = possible_designations(carrier_set)
|
||||||
|
possible_interps = possible_interpretations(logic, carrier_set)
|
||||||
|
|
||||||
|
satisfied_models = []
|
||||||
|
checked = 0
|
||||||
|
for designated_values, interpretation in product(possible_designated_values, possible_interps):
|
||||||
|
checked += 1
|
||||||
|
designated_values = set(designated_values)
|
||||||
|
|
||||||
|
model = Model(carrier_set, set(interpretation.values()), designated_values)
|
||||||
|
if satisfiable(logic, model, interpretation):
|
||||||
|
satisfied_models.append(model)
|
||||||
|
print(model)
|
||||||
|
|
||||||
|
print("Checked", checked)
|
||||||
|
|
||||||
|
return satisfied_models
|
128
logic.py
Normal file
128
logic.py
Normal file
|
@ -0,0 +1,128 @@
|
||||||
|
from typing import Any, Set
|
||||||
|
from functools import lru_cache
|
||||||
|
|
||||||
|
class Operation:
|
||||||
|
def __init__(self, symbol: str, arity: int):
|
||||||
|
self.symbol = symbol
|
||||||
|
self.arity = arity
|
||||||
|
self.hashed_value = hash(self.symbol) + self.arity
|
||||||
|
def immutable(self, name, value):
|
||||||
|
raise Exception("Operations are immutable")
|
||||||
|
self.__setattr__ = immutable
|
||||||
|
|
||||||
|
def __hash__(self):
|
||||||
|
return self.hashed_value
|
||||||
|
|
||||||
|
def __call__(self, *args):
|
||||||
|
# Ensure the arity is met
|
||||||
|
assert len(args) == self.arity
|
||||||
|
# Ensure every argument is a term
|
||||||
|
for t in args:
|
||||||
|
assert isinstance(t, Term)
|
||||||
|
return OpTerm(self, args)
|
||||||
|
|
||||||
|
|
||||||
|
class Term:
|
||||||
|
def __init__(self):
|
||||||
|
pass
|
||||||
|
def __lt__(self, y):
|
||||||
|
return Inequation(self, y)
|
||||||
|
|
||||||
|
class PropositionalVariable(Term):
|
||||||
|
def __init__(self, name):
|
||||||
|
self.name = name
|
||||||
|
self.hashed_value = hash(self.name)
|
||||||
|
def immutable(self, name, value):
|
||||||
|
raise Exception("Propositional variables are immutable")
|
||||||
|
self.__setattr__ = immutable
|
||||||
|
|
||||||
|
def __hash__(self):
|
||||||
|
return self.hashed_value
|
||||||
|
# def __setattr__(self, name: str, value: Any):
|
||||||
|
# raise Exception("Propositional variables are immutable")
|
||||||
|
def __str__(self):
|
||||||
|
return self.name
|
||||||
|
|
||||||
|
# def PropTerm(Term):
|
||||||
|
# def __init__(self, v: PropositionalVariable):
|
||||||
|
# self.v = v
|
||||||
|
|
||||||
|
class OpTerm(Term):
|
||||||
|
def __init__(self, operation: Operation, arguments):
|
||||||
|
assert len(arguments) == operation.arity
|
||||||
|
self.operation = operation
|
||||||
|
self.arguments = arguments
|
||||||
|
|
||||||
|
self.hashed_value = hash(self.operation) * hash(self.arguments)
|
||||||
|
def immutable(self, name, value):
|
||||||
|
raise Exception("Terms are immutable")
|
||||||
|
self.__setattr__ = immutable
|
||||||
|
|
||||||
|
def __hash__(self):
|
||||||
|
return self.hashed_value
|
||||||
|
|
||||||
|
def __str__(self):
|
||||||
|
arg_strs = [str(a) for a in self.arguments]
|
||||||
|
return self.operation.symbol + "(" + ",".join(arg_strs) + ")"
|
||||||
|
|
||||||
|
Negation = Operation("¬", 1)
|
||||||
|
Conjunction = Operation("∧", 2)
|
||||||
|
Disjunction = Operation("∨", 2)
|
||||||
|
Implication = Operation("→", 2)
|
||||||
|
|
||||||
|
|
||||||
|
class Inequation:
|
||||||
|
def __init__(self, antecedant : Term, consequent: Term):
|
||||||
|
self.antecedant = antecedant
|
||||||
|
self.consequent = consequent
|
||||||
|
def __str__(self):
|
||||||
|
return str(self.antecedant) + "≤" + str(self.consequent)
|
||||||
|
|
||||||
|
class InequalityRule:
|
||||||
|
def __init__(self, premises : Set[Inequation], conclusion: Inequation):
|
||||||
|
self.premises = premises
|
||||||
|
self.conclusion = conclusion
|
||||||
|
|
||||||
|
def __str__(self):
|
||||||
|
str_premises = [str(p) for p in self.premises]
|
||||||
|
str_premises2 = "{" + ",".join(str_premises) + "}"
|
||||||
|
return str(str_premises2) + "=>" + str(self.conclusion)
|
||||||
|
|
||||||
|
class Rule:
|
||||||
|
def __init__(self, premises : Set[Term], conclusion: Term):
|
||||||
|
self.premises = premises
|
||||||
|
self.conclusion = conclusion
|
||||||
|
|
||||||
|
def __str__(self):
|
||||||
|
str_premises = [str(p) for p in self.premises]
|
||||||
|
str_premises2 = "{" + ",".join(str_premises) + "}"
|
||||||
|
return str(str_premises2) + "=>" + str(self.conclusion)
|
||||||
|
|
||||||
|
class Logic:
|
||||||
|
def __init__(self, operations: Set[Operation], rules: Set[Rule]):
|
||||||
|
self.operations = operations
|
||||||
|
self.rules = rules
|
||||||
|
|
||||||
|
|
||||||
|
def get_prop_var_from_term(t: Term):
|
||||||
|
if isinstance(t, PropositionalVariable):
|
||||||
|
return {t,}
|
||||||
|
|
||||||
|
result = set()
|
||||||
|
for arg in t.arguments:
|
||||||
|
result |= get_prop_var_from_term(arg)
|
||||||
|
|
||||||
|
return result
|
||||||
|
|
||||||
|
def get_propostional_variables(rules):
|
||||||
|
vars = set()
|
||||||
|
|
||||||
|
for rule in rules:
|
||||||
|
# Get all vars in premises
|
||||||
|
for premise in rule.premises:
|
||||||
|
vars |= get_prop_var_from_term(premise)
|
||||||
|
|
||||||
|
# Get vars in conclusion
|
||||||
|
vars |= get_prop_var_from_term(rule.conclusion)
|
||||||
|
|
||||||
|
return vars
|
130
model.py
Normal file
130
model.py
Normal file
|
@ -0,0 +1,130 @@
|
||||||
|
"""
|
||||||
|
Defining what it means to be a model
|
||||||
|
"""
|
||||||
|
from logic import (
|
||||||
|
PropositionalVariable, get_propostional_variables, Logic, Term,
|
||||||
|
Operation
|
||||||
|
)
|
||||||
|
from typing import Set, List, Dict
|
||||||
|
from itertools import product
|
||||||
|
|
||||||
|
__all__ = ['ModelValue', 'ModelFunction', 'Model']
|
||||||
|
|
||||||
|
|
||||||
|
def set_to_str(x):
|
||||||
|
return "{" + ", ".join((str(xi) for xi in x)) + "}"
|
||||||
|
|
||||||
|
class ModelValue:
|
||||||
|
def __init__(self, name):
|
||||||
|
self.name = name
|
||||||
|
self.hashed_value = hash(self.name)
|
||||||
|
def immutable(self, name, value):
|
||||||
|
raise Exception("Model values are immutable")
|
||||||
|
self.__setattr__ = immutable
|
||||||
|
def __str__(self):
|
||||||
|
return self.name
|
||||||
|
def __hash__(self):
|
||||||
|
return self.hashed_value
|
||||||
|
def __eq__(self, other):
|
||||||
|
return isinstance(other, ModelValue) and self.name == other.name
|
||||||
|
|
||||||
|
|
||||||
|
class ModelFunction:
|
||||||
|
def __init__(self, mapping, operation_name = ""):
|
||||||
|
self.operation_name = operation_name
|
||||||
|
|
||||||
|
# Correct input to always be a tuple
|
||||||
|
corrected_mapping = dict()
|
||||||
|
for k, v in mapping.items():
|
||||||
|
if isinstance(k, tuple):
|
||||||
|
corrected_mapping[k] = v
|
||||||
|
elif isinstance(k, list):
|
||||||
|
corrected_mapping[tuple(k)] = v
|
||||||
|
else: # Assume it's atomic
|
||||||
|
corrected_mapping[(k,)] = v
|
||||||
|
|
||||||
|
self.mapping = corrected_mapping
|
||||||
|
|
||||||
|
def __str__(self):
|
||||||
|
str_dict = dict()
|
||||||
|
for k, v in self.mapping.items():
|
||||||
|
inputstr = "(" + ", ".join(str(ki) for ki in k) + ")"
|
||||||
|
str_dict[inputstr] = str(v)
|
||||||
|
return str(str_dict)
|
||||||
|
|
||||||
|
def __call__(self, *args):
|
||||||
|
return self.mapping[args]
|
||||||
|
|
||||||
|
# def __eq__(self, other):
|
||||||
|
# return isinstance(other, ModelFunction) and self.name == other.name and self.arity == other.arity
|
||||||
|
|
||||||
|
class Model:
|
||||||
|
def __init__(
|
||||||
|
self,
|
||||||
|
carrier_set: Set[ModelValue],
|
||||||
|
logical_operations: Set[ModelFunction],
|
||||||
|
designated_values: Set[ModelValue]
|
||||||
|
):
|
||||||
|
assert designated_values <= carrier_set
|
||||||
|
self.carrier_set = carrier_set
|
||||||
|
self.logical_operations = logical_operations
|
||||||
|
self.designated_values = designated_values
|
||||||
|
|
||||||
|
def __str__(self):
|
||||||
|
result = f"""Carrier Set: {set_to_str(self.carrier_set)}
|
||||||
|
Designated Values: {set_to_str(self.designated_values)}
|
||||||
|
"""
|
||||||
|
for function in self.logical_operations:
|
||||||
|
result += f"{str(function)}\n"
|
||||||
|
|
||||||
|
return result
|
||||||
|
|
||||||
|
|
||||||
|
def evaluate_term(t: Term, f: Dict[PropositionalVariable, ModelValue], interpretation: Dict[Operation, ModelFunction]):
|
||||||
|
if isinstance(t, PropositionalVariable):
|
||||||
|
return f[t]
|
||||||
|
|
||||||
|
model_function = interpretation[t.operation]
|
||||||
|
model_arguments = []
|
||||||
|
for logic_arg in t.arguments:
|
||||||
|
model_arg = evaluate_term(logic_arg, f, interpretation)
|
||||||
|
model_arguments.append(model_arg)
|
||||||
|
|
||||||
|
return model_function(*model_arguments)
|
||||||
|
|
||||||
|
def all_model_valuations(
|
||||||
|
pvars: Set[PropositionalVariable],
|
||||||
|
mvalues: Set[ModelValue]):
|
||||||
|
|
||||||
|
pvars = list(pvars)
|
||||||
|
possible_valuations = [mvalues for _ in pvars]
|
||||||
|
all_possible_values = product(*possible_valuations)
|
||||||
|
|
||||||
|
for valuation in all_possible_values:
|
||||||
|
mapping = dict()
|
||||||
|
assert len(pvars) == len(valuation)
|
||||||
|
for pvar, value in zip(pvars, valuation):
|
||||||
|
mapping[pvar] = value
|
||||||
|
yield mapping
|
||||||
|
|
||||||
|
|
||||||
|
def satisfiable(logic: Logic, model: Model, interpretation: Dict[Operation, ModelFunction]):
|
||||||
|
pvars = get_propostional_variables(logic.rules)
|
||||||
|
mappings = all_model_valuations(pvars, model.carrier_set)
|
||||||
|
|
||||||
|
for mapping in mappings:
|
||||||
|
for rule in logic.rules:
|
||||||
|
premise_met = True
|
||||||
|
for premise in rule.premises:
|
||||||
|
t = evaluate_term(premise, mapping, interpretation)
|
||||||
|
if t not in model.designated_values:
|
||||||
|
premise_met = False
|
||||||
|
break
|
||||||
|
if not premise_met:
|
||||||
|
continue
|
||||||
|
|
||||||
|
t = evaluate_term(rule.conclusion, mapping, interpretation)
|
||||||
|
if t not in model.designated_values:
|
||||||
|
return False
|
||||||
|
|
||||||
|
return True
|
Loading…
Add table
Reference in a new issue