mirror of
				https://github.com/Brandon-Rozek/matmod.git
				synced 2025-11-03 03:11:12 +00:00 
			
		
		
		
	Discard subalgebras with bottom/top
This commit is contained in:
		
						commit
						8628107704
					
				
					 2 changed files with 95 additions and 6 deletions
				
			
		
							
								
								
									
										36
									
								
								model.py
									
										
									
									
									
								
							
							
						
						
									
										36
									
								
								model.py
									
										
									
									
									
								
							| 
						 | 
					@ -219,15 +219,18 @@ def satisfiable(logic: Logic, model: Model, interpretation: Dict[Operation, Mode
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def model_closure(initial_set: Set[ModelValue], mfunctions: Set[ModelFunction]):
 | 
					def model_closure(initial_set: Set[ModelValue], mfunctions: Set[ModelFunction], top: Optional[ModelValue], bottom: Optional[ModelValue]) -> Set[ModelValue]:
 | 
				
			||||||
    """
 | 
					    """
 | 
				
			||||||
    Given an initial set of model values and a set of model functions,
 | 
					    Given an initial set of model values and a set of model functions,
 | 
				
			||||||
    compute the complete set of model values that are closed
 | 
					    compute the complete set of model values that are closed
 | 
				
			||||||
    under the operations.
 | 
					    under the operations.
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    If top or bottom is encountered, then we end the saturation procedure early.
 | 
				
			||||||
    """
 | 
					    """
 | 
				
			||||||
    closure_set: Set[ModelValue] = initial_set
 | 
					    closure_set: Set[ModelValue] = initial_set
 | 
				
			||||||
    last_new: Set[ModelValue] = initial_set
 | 
					    last_new: Set[ModelValue] = initial_set
 | 
				
			||||||
    changed: bool = True
 | 
					    changed: bool = True
 | 
				
			||||||
 | 
					    topbottom_found = False
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    while changed:
 | 
					    while changed:
 | 
				
			||||||
        changed = False
 | 
					        changed = False
 | 
				
			||||||
| 
						 | 
					@ -251,6 +254,18 @@ def model_closure(initial_set: Set[ModelValue], mfunctions: Set[ModelFunction]):
 | 
				
			||||||
                    if element not in closure_set:
 | 
					                    if element not in closure_set:
 | 
				
			||||||
                        new_elements.add(element)
 | 
					                        new_elements.add(element)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					                    # Optimization: Break out of computation
 | 
				
			||||||
 | 
					                    # early when top or bottom element is foun
 | 
				
			||||||
 | 
					                    if top is not None and element == top:
 | 
				
			||||||
 | 
					                        topbottom_found = True
 | 
				
			||||||
 | 
					                    if bottom is not None and element == bottom:
 | 
				
			||||||
 | 
					                        topbottom_found = True
 | 
				
			||||||
 | 
					                    if topbottom_found:
 | 
				
			||||||
 | 
					                        break
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					                if topbottom_found:
 | 
				
			||||||
 | 
					                    break
 | 
				
			||||||
 | 
					
 | 
				
			||||||
                # We don't need to compute the arguments
 | 
					                # We don't need to compute the arguments
 | 
				
			||||||
                # thanks to the cache, so move onto the
 | 
					                # thanks to the cache, so move onto the
 | 
				
			||||||
                # next function.
 | 
					                # next function.
 | 
				
			||||||
| 
						 | 
					@ -274,8 +289,27 @@ def model_closure(initial_set: Set[ModelValue], mfunctions: Set[ModelFunction]):
 | 
				
			||||||
                        if element not in closure_set:
 | 
					                        if element not in closure_set:
 | 
				
			||||||
                            new_elements.add(element)
 | 
					                            new_elements.add(element)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					                        # Optimization: Break out of computation
 | 
				
			||||||
 | 
					                        # early when top or bottom element is foun
 | 
				
			||||||
 | 
					                        if top is not None and element == top:
 | 
				
			||||||
 | 
					                            topbottom_found = True
 | 
				
			||||||
 | 
					                        if bottom is not None and element == bottom:
 | 
				
			||||||
 | 
					                            topbottom_found = True
 | 
				
			||||||
 | 
					                        if topbottom_found:
 | 
				
			||||||
 | 
					                            break
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					                    if topbottom_found:
 | 
				
			||||||
 | 
					                        break
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					                if topbottom_found:
 | 
				
			||||||
 | 
					                    break
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        closure_set.update(new_elements)
 | 
					        closure_set.update(new_elements)
 | 
				
			||||||
        changed = len(new_elements) > 0
 | 
					        changed = len(new_elements) > 0
 | 
				
			||||||
        last_new = new_elements
 | 
					        last_new = new_elements
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        if topbottom_found:
 | 
				
			||||||
 | 
					            break
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    return closure_set
 | 
					    return closure_set
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
							
								
								
									
										65
									
								
								vsp.py
									
										
									
									
									
								
							
							
						
						
									
										65
									
								
								vsp.py
									
										
									
									
									
								
							| 
						 | 
					@ -8,7 +8,7 @@ from common import set_to_str
 | 
				
			||||||
from model import (
 | 
					from model import (
 | 
				
			||||||
    Model, model_closure, ModelFunction, ModelValue
 | 
					    Model, model_closure, ModelFunction, ModelValue
 | 
				
			||||||
)
 | 
					)
 | 
				
			||||||
from logic import Implication, Operation
 | 
					from logic import Conjunction, Disjunction, Implication, Operation
 | 
				
			||||||
 | 
					
 | 
				
			||||||
def preseed(
 | 
					def preseed(
 | 
				
			||||||
        initial_set: Set[ModelValue],
 | 
					        initial_set: Set[ModelValue],
 | 
				
			||||||
| 
						 | 
					@ -38,6 +38,40 @@ def preseed(
 | 
				
			||||||
    same_set = candidate_preseed[1] == 0
 | 
					    same_set = candidate_preseed[1] == 0
 | 
				
			||||||
    return candidate_preseed[0], same_set
 | 
					    return candidate_preseed[0], same_set
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def find_top(algebra: Set[ModelValue], mconjunction: Optional[ModelFunction], mdisjunction: Optional[ModelFunction]) -> Optional[ModelValue]:
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    Find the top of the order lattice.
 | 
				
			||||||
 | 
					    T || a = T, T && a = a for all a in the carrier set
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    if mconjunction is None or mdisjunction is None:
 | 
				
			||||||
 | 
					        return None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    for x in algebra:
 | 
				
			||||||
 | 
					        for y in algebra:
 | 
				
			||||||
 | 
					            if mdisjunction(x, y) == x and mconjunction(x, y) == y:
 | 
				
			||||||
 | 
					                return x
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    print("[Warning] Failed to find the top of the lattice")
 | 
				
			||||||
 | 
					    return None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					def find_bottom(algebra: Set[ModelValue], mconjunction: Optional[ModelFunction], mdisjunction: Optional[ModelFunction]) -> Optional[ModelValue]:
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    Find the bottom of the order lattice
 | 
				
			||||||
 | 
					    F || a = a, F && a = F for all a in the carrier set
 | 
				
			||||||
 | 
					    """
 | 
				
			||||||
 | 
					    if mconjunction is None or mdisjunction is None:
 | 
				
			||||||
 | 
					        return None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    for x in algebra:
 | 
				
			||||||
 | 
					        for y in algebra:
 | 
				
			||||||
 | 
					            if mdisjunction(x, y) == y and mconjunction(x, y) == x:
 | 
				
			||||||
 | 
					                return x
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					    print("[Warning] Failed to find the bottom of the lattice")
 | 
				
			||||||
 | 
					    return None
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
class VSP_Result:
 | 
					class VSP_Result:
 | 
				
			||||||
    def __init__(
 | 
					    def __init__(
 | 
				
			||||||
            self, has_vsp: bool, model_name: Optional[str] = None,
 | 
					            self, has_vsp: bool, model_name: Optional[str] = None,
 | 
				
			||||||
| 
						 | 
					@ -62,6 +96,10 @@ def has_vsp(model: Model, interpretation: Dict[Operation, ModelFunction]) -> VSP
 | 
				
			||||||
    sharing property.
 | 
					    sharing property.
 | 
				
			||||||
    """
 | 
					    """
 | 
				
			||||||
    impfunction = interpretation[Implication]
 | 
					    impfunction = interpretation[Implication]
 | 
				
			||||||
 | 
					    mconjunction = interpretation.get(Conjunction)
 | 
				
			||||||
 | 
					    mdisjunction = interpretation.get(Disjunction)
 | 
				
			||||||
 | 
					    top = find_top(model.carrier_set, mconjunction, mdisjunction)
 | 
				
			||||||
 | 
					    bottom = find_bottom(model.carrier_set, mconjunction, mdisjunction)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
    # NOTE: No models with only one designated
 | 
					    # NOTE: No models with only one designated
 | 
				
			||||||
    # value satisfies VSP
 | 
					    # value satisfies VSP
 | 
				
			||||||
| 
						 | 
					@ -101,28 +139,45 @@ def has_vsp(model: Model, interpretation: Dict[Operation, ModelFunction]) -> VSP
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        # NOTE: Optimziation before model_closure
 | 
					        # NOTE: Optimziation before model_closure
 | 
				
			||||||
        # If the carrier set intersects, then move on to the next
 | 
					        # If the two subalgebras intersect, move
 | 
				
			||||||
        # subalgebra
 | 
					        # onto the next pair
 | 
				
			||||||
        if len(xs & ys) > 0:
 | 
					        if len(xs & ys) > 0:
 | 
				
			||||||
            continue
 | 
					            continue
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        # NOTE: Optimization
 | 
				
			||||||
 | 
					        # if either subalgebra contains top or bottom, move
 | 
				
			||||||
 | 
					        # onto the next pair
 | 
				
			||||||
 | 
					        if top is not None and (top in xs or top in ys):
 | 
				
			||||||
 | 
					            continue
 | 
				
			||||||
 | 
					        if bottom is not None and (bottom in xs or bottom in ys):
 | 
				
			||||||
 | 
					            continue
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        # Compute the closure of all operations
 | 
					        # Compute the closure of all operations
 | 
				
			||||||
        # with just the xs
 | 
					        # with just the xs
 | 
				
			||||||
        carrier_set_left: Set[ModelValue] = model_closure(xs, model.logical_operations)
 | 
					        carrier_set_left: Set[ModelValue] = model_closure(xs, model.logical_operations, top, bottom)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        # Save to cache
 | 
					        # Save to cache
 | 
				
			||||||
        if cached_xs[0] is not None and not cached_ys[1]:
 | 
					        if cached_xs[0] is not None and not cached_ys[1]:
 | 
				
			||||||
            closure_cache.append((orig_xs, carrier_set_left))
 | 
					            closure_cache.append((orig_xs, carrier_set_left))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        if top is not None and top in carrier_set_left:
 | 
				
			||||||
 | 
					            continue
 | 
				
			||||||
 | 
					        if bottom is not None and bottom in carrier_set_left:
 | 
				
			||||||
 | 
					            continue
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        # Compute the closure of all operations
 | 
					        # Compute the closure of all operations
 | 
				
			||||||
        # with just the ys
 | 
					        # with just the ys
 | 
				
			||||||
        carrier_set_right: Set[ModelValue] = model_closure(ys, model.logical_operations)
 | 
					        carrier_set_right: Set[ModelValue] = model_closure(ys, model.logical_operations, top, bottom)
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        # Save to cache
 | 
					        # Save to cache
 | 
				
			||||||
        if cached_ys[0] is not None and not cached_ys[1]:
 | 
					        if cached_ys[0] is not None and not cached_ys[1]:
 | 
				
			||||||
            closure_cache.append((orig_ys, carrier_set_right))
 | 
					            closure_cache.append((orig_ys, carrier_set_right))
 | 
				
			||||||
 | 
					
 | 
				
			||||||
 | 
					        if top is not None and top in carrier_set_right:
 | 
				
			||||||
 | 
					            continue
 | 
				
			||||||
 | 
					        if bottom is not None and bottom in carrier_set_right:
 | 
				
			||||||
 | 
					            continue
 | 
				
			||||||
 | 
					
 | 
				
			||||||
        # If the carrier set intersects, then move on to the next
 | 
					        # If the carrier set intersects, then move on to the next
 | 
				
			||||||
        # subalgebra
 | 
					        # subalgebra
 | 
				
			||||||
| 
						 | 
					
 | 
				
			||||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue