mirror of
				https://github.com/Brandon-Rozek/matmod.git
				synced 2025-11-03 03:11:12 +00:00 
			
		
		
		
	Transformed subalgebra generation from exponential to linear
This commit is contained in:
		
							parent
							
								
									214e9ba658
								
							
						
					
					
						commit
						7b652f36eb
					
				
					 1 changed files with 41 additions and 112 deletions
				
			
		
							
								
								
									
										153
									
								
								vsp.py
									
										
									
									
									
								
							
							
						
						
									
										153
									
								
								vsp.py
									
										
									
									
									
								
							| 
						 | 
				
			
			@ -2,54 +2,13 @@
 | 
			
		|||
Check to see if the model has the variable
 | 
			
		||||
sharing property.
 | 
			
		||||
"""
 | 
			
		||||
from collections import defaultdict
 | 
			
		||||
from itertools import chain, combinations, product
 | 
			
		||||
from itertools import product
 | 
			
		||||
from typing import List, Optional, Set, Tuple
 | 
			
		||||
from common import set_to_str
 | 
			
		||||
from model import (
 | 
			
		||||
    Model, model_closure, ModelFunction, ModelValue, OrderTable
 | 
			
		||||
    Model, model_closure, ModelFunction, ModelValue
 | 
			
		||||
)
 | 
			
		||||
 | 
			
		||||
class Cache:
 | 
			
		||||
    def __init__(self):
 | 
			
		||||
        # input size -> cached (inputs, outputs)
 | 
			
		||||
        self.c = defaultdict(list)
 | 
			
		||||
 | 
			
		||||
    def add(self, i: Set[ModelValue], o: Set[ModelValue]):
 | 
			
		||||
        self.c[len(i)].append((i, o))
 | 
			
		||||
 | 
			
		||||
    def get_closest(self, initial_set: Set[ModelValue]) -> Optional[Tuple[Set[ModelValue], bool]]:
 | 
			
		||||
        """
 | 
			
		||||
        Iterate through our cache starting with the cached
 | 
			
		||||
        inputs closest in size to the initial_set and
 | 
			
		||||
        find the one that's a subset of initial_set.
 | 
			
		||||
 | 
			
		||||
        Returns cached_output, and whether the initial_set is the same
 | 
			
		||||
        as the cached_input.
 | 
			
		||||
        """
 | 
			
		||||
        initial_set_size = len(initial_set)
 | 
			
		||||
        sizes = range(initial_set_size, 0, -1)
 | 
			
		||||
 | 
			
		||||
        for size in sizes:
 | 
			
		||||
            if size not in self.c:
 | 
			
		||||
                continue
 | 
			
		||||
 | 
			
		||||
            for cached_input, cached_output in self.c[size]:
 | 
			
		||||
                if cached_input <= initial_set:
 | 
			
		||||
                    return cached_output, size == initial_set_size
 | 
			
		||||
 | 
			
		||||
        return None
 | 
			
		||||
 | 
			
		||||
def order_dependent(subalgebra1: Set[ModelValue], subalegbra2: Set[ModelValue], ordering: OrderTable):
 | 
			
		||||
    """
 | 
			
		||||
    Returns true if there exists a value in subalgebra1 that's less than a value in subalgebra2
 | 
			
		||||
    """
 | 
			
		||||
    for x in subalgebra1:
 | 
			
		||||
        for y in subalegbra2:
 | 
			
		||||
            if ordering.is_lt(x, y):
 | 
			
		||||
                return True
 | 
			
		||||
    return False
 | 
			
		||||
 | 
			
		||||
class VSP_Result:
 | 
			
		||||
    def __init__(
 | 
			
		||||
            self, has_vsp: bool, model_name: Optional[str] = None,
 | 
			
		||||
| 
						 | 
				
			
			@ -68,38 +27,6 @@ Subalgebra 1: {set_to_str(self.subalgebra1)}
 | 
			
		|||
Subalgebra 2: {set_to_str(self.subalgebra2)}
 | 
			
		||||
"""
 | 
			
		||||
 | 
			
		||||
def quick_vsp_unsat_incomplete(xs, ys, model, top, bottom, negation_defined) -> bool:
 | 
			
		||||
    """
 | 
			
		||||
    Return True if VSP cannot be satisfied
 | 
			
		||||
    through some incomplete checks.
 | 
			
		||||
    """
 | 
			
		||||
    # If the left subalgebra contains bottom
 | 
			
		||||
    # or the right subalgebra contains top
 | 
			
		||||
    # skip this pair
 | 
			
		||||
    if top is not None and top in ys:
 | 
			
		||||
        return True
 | 
			
		||||
    if negation_defined and bottom is not None and bottom in ys:
 | 
			
		||||
        return True
 | 
			
		||||
    if bottom is not None and bottom in xs:
 | 
			
		||||
        return True
 | 
			
		||||
    if negation_defined and top is not None and top in xs:
 | 
			
		||||
        return True
 | 
			
		||||
 | 
			
		||||
    # If the two subalgebras intersect, move
 | 
			
		||||
    # onto the next pair.
 | 
			
		||||
    if not xs.isdisjoint(ys):
 | 
			
		||||
        return True
 | 
			
		||||
 | 
			
		||||
    # If the subalgebras are order-dependent, skip this pair
 | 
			
		||||
    if order_dependent(xs, ys, model.ordering):
 | 
			
		||||
        return True
 | 
			
		||||
    if negation_defined and order_dependent(ys, xs, model.ordering):
 | 
			
		||||
        return True
 | 
			
		||||
 | 
			
		||||
    # We can't immediately rule out that these
 | 
			
		||||
    # subalgebras don't exhibit VSP
 | 
			
		||||
    return False
 | 
			
		||||
 | 
			
		||||
def has_vsp(model: Model, impfunction: ModelFunction,
 | 
			
		||||
            negation_defined: bool) -> VSP_Result:
 | 
			
		||||
    """
 | 
			
		||||
| 
						 | 
				
			
			@ -124,64 +51,66 @@ def has_vsp(model: Model, impfunction: ModelFunction,
 | 
			
		|||
        if impfunction(x, y) not in model.designated_values:
 | 
			
		||||
            I.append((x, y))
 | 
			
		||||
 | 
			
		||||
    # Construct the powerset of I without the empty set
 | 
			
		||||
    I_power = chain.from_iterable(combinations(I, r) for r in range(1, len(I) + 1))
 | 
			
		||||
    # ((x1, y1)), ((x1, y1), (x2, y2)), ...
 | 
			
		||||
 | 
			
		||||
    closure_cache = Cache()
 | 
			
		||||
 | 
			
		||||
    # Find the subalgebras which falsify implication
 | 
			
		||||
    for xys in I_power:
 | 
			
		||||
    for xys in I:
 | 
			
		||||
 | 
			
		||||
        xs = { xy[0] for xy in xys }
 | 
			
		||||
        ys = { xy[1] for xy in xys }
 | 
			
		||||
        xi = xys[0]
 | 
			
		||||
 | 
			
		||||
        if quick_vsp_unsat_incomplete(xs, ys, model, top, bottom, negation_defined):
 | 
			
		||||
        # Discard ({⊥} ∪ A', B) subalgebras
 | 
			
		||||
        if bottom is not None and xi == bottom:
 | 
			
		||||
            continue
 | 
			
		||||
 | 
			
		||||
        orig_xs = xs
 | 
			
		||||
        cached_xs = closure_cache.get_closest(xs)
 | 
			
		||||
        if cached_xs is not None:
 | 
			
		||||
            xs |= cached_xs[0]
 | 
			
		||||
 | 
			
		||||
        orig_ys = ys
 | 
			
		||||
        cached_ys = closure_cache.get_closest(ys)
 | 
			
		||||
        if cached_ys is not None:
 | 
			
		||||
            ys |= cached_ys[0]
 | 
			
		||||
 | 
			
		||||
        xs_ys_updated = cached_xs is not None or cached_ys is not None
 | 
			
		||||
        if xs_ys_updated and quick_vsp_unsat_incomplete(xs, ys, model, top, bottom, negation_defined):
 | 
			
		||||
        # Discard ({⊤} ∪ A', B) subalgebras when negation is defined
 | 
			
		||||
        if top is not None and negation_defined and xi == top:
 | 
			
		||||
            continue
 | 
			
		||||
 | 
			
		||||
        # Compute the closure of all operations
 | 
			
		||||
        # with just the xs
 | 
			
		||||
        carrier_set_left: Set[ModelValue] = model_closure(xs, model.logical_operations, bottom)
 | 
			
		||||
        yi = xys[1]
 | 
			
		||||
 | 
			
		||||
        # Save to cache
 | 
			
		||||
        if cached_xs is None or (cached_xs is not None and not cached_xs[1]):
 | 
			
		||||
            closure_cache.add(orig_xs, carrier_set_left)
 | 
			
		||||
        # Discard (A, {⊤} ∪ B') subalgebras
 | 
			
		||||
        if top is not None and yi == top:
 | 
			
		||||
            continue
 | 
			
		||||
 | 
			
		||||
        # Discard (A, {⊥} ∪ B') subalgebras when negation is defined
 | 
			
		||||
        if bottom is not None and negation_defined and yi == bottom:
 | 
			
		||||
            continue
 | 
			
		||||
 | 
			
		||||
        # Discard ({a} ∪ A', {b} ∪ B') subalgebras when a <= b
 | 
			
		||||
        if model.ordering.is_lt(xi, yi):
 | 
			
		||||
            continue
 | 
			
		||||
 | 
			
		||||
        # Discard ({a} ∪ A', {b} ∪ B') subalgebras when b <= a and negation is defined
 | 
			
		||||
        if negation_defined and model.ordering.is_lt(yi, xi):
 | 
			
		||||
            continue
 | 
			
		||||
 | 
			
		||||
        # Compute the left closure of the set containing xi under all the operations
 | 
			
		||||
        carrier_set_left: Set[ModelValue] = model_closure({xi,}, model.logical_operations, bottom)
 | 
			
		||||
 | 
			
		||||
        # Discard ({⊥} ∪ A', B) subalgebras
 | 
			
		||||
        if bottom is not None and bottom in carrier_set_left:
 | 
			
		||||
            continue
 | 
			
		||||
 | 
			
		||||
        # Discard ({⊤} ∪ A', B) subalgebras when negation is defined
 | 
			
		||||
        if top is not None and negation_defined and top in carrier_set_left:
 | 
			
		||||
            continue
 | 
			
		||||
 | 
			
		||||
        # Compute the closure of all operations
 | 
			
		||||
        # with just the ys
 | 
			
		||||
        carrier_set_right: Set[ModelValue] = model_closure(ys, model.logical_operations, top)
 | 
			
		||||
 | 
			
		||||
        # Save to cache
 | 
			
		||||
        if cached_ys is None or (cached_ys is not None and not cached_ys[1]):
 | 
			
		||||
            closure_cache.add(orig_ys, carrier_set_right)
 | 
			
		||||
        carrier_set_right: Set[ModelValue] = model_closure({yi,}, model.logical_operations, top)
 | 
			
		||||
 | 
			
		||||
        # Discard (A, {⊤} ∪ B') subalgebras
 | 
			
		||||
        if top is not None and top in carrier_set_right:
 | 
			
		||||
            continue
 | 
			
		||||
 | 
			
		||||
        # If the carrier set intersects, then move on to the next
 | 
			
		||||
        # subalgebra
 | 
			
		||||
        # Discard (A, {⊥} ∪ B') subalgebras when negation is defined
 | 
			
		||||
        if bottom is not None and negation_defined and bottom in carrier_set_right:
 | 
			
		||||
            continue
 | 
			
		||||
 | 
			
		||||
        # Discard subalgebras that intersect
 | 
			
		||||
        if not carrier_set_left.isdisjoint(carrier_set_right):
 | 
			
		||||
            continue
 | 
			
		||||
 | 
			
		||||
        # See if for all pairs in the subalgebras, that
 | 
			
		||||
        # implication is falsified
 | 
			
		||||
        # Check whether for all pairs in the subalgebra,
 | 
			
		||||
        # that implication is falsified.
 | 
			
		||||
        falsified = True
 | 
			
		||||
        for (x2, y2) in product(carrier_set_left, carrier_set_right):
 | 
			
		||||
            if impfunction(x2, y2) in model.designated_values:
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue