mirror of
https://github.com/Brandon-Rozek/matmod.git
synced 2026-01-30 07:33:38 +00:00
Updated driver file R.py to showcase SMT techinques
Fixed minor bugs concerning lack of falsification rules and interfaces between VSP and SMT
This commit is contained in:
parent
f8eca388d4
commit
6d87793803
5 changed files with 120 additions and 65 deletions
81
R.py
81
R.py
|
|
@ -12,7 +12,8 @@ from logic import (
|
|||
)
|
||||
from model import Model, ModelFunction, ModelValue, satisfiable
|
||||
from generate_model import generate_model
|
||||
# from vsp import has_vsp
|
||||
from vsp import has_vsp
|
||||
from smt import smt_is_loaded
|
||||
|
||||
|
||||
# ===================================================
|
||||
|
|
@ -56,12 +57,17 @@ disjunction_rules = {
|
|||
Rule({Conjunction(x, Disjunction(y, z)),}, Disjunction(Conjunction(x, y), Conjunction(x, z)))
|
||||
}
|
||||
|
||||
falsification_rules = {
|
||||
# At least one value is non-designated
|
||||
Rule(set(), x)
|
||||
}
|
||||
|
||||
|
||||
logic_rules = implication_rules | negation_rules | conjunction_rules | disjunction_rules
|
||||
|
||||
operations = {Negation, Conjunction, Disjunction, Implication}
|
||||
|
||||
R_logic = Logic(operations, logic_rules, "R")
|
||||
R_logic = Logic(operations, logic_rules, falsification_rules, "R")
|
||||
|
||||
# ===============================
|
||||
|
||||
|
|
@ -69,36 +75,36 @@ R_logic = Logic(operations, logic_rules, "R")
|
|||
Example 2-Element Model of R
|
||||
"""
|
||||
|
||||
a0 = ModelValue("a0")
|
||||
a1 = ModelValue("a1")
|
||||
a0 = ModelValue("0")
|
||||
a1 = ModelValue("1")
|
||||
|
||||
carrier_set = {a0, a1}
|
||||
|
||||
mnegation = ModelFunction(1, {
|
||||
a0: a1,
|
||||
a1: a0
|
||||
})
|
||||
}, "¬")
|
||||
|
||||
mimplication = ModelFunction(2, {
|
||||
(a0, a0): a1,
|
||||
(a0, a1): a1,
|
||||
(a1, a0): a0,
|
||||
(a1, a1): a1
|
||||
})
|
||||
}, "→")
|
||||
|
||||
mconjunction = ModelFunction(2, {
|
||||
(a0, a0): a0,
|
||||
(a0, a1): a0,
|
||||
(a1, a0): a0,
|
||||
(a1, a1): a1
|
||||
})
|
||||
}, "∧")
|
||||
|
||||
mdisjunction = ModelFunction(2, {
|
||||
(a0, a0): a0,
|
||||
(a0, a1): a1,
|
||||
(a1, a0): a1,
|
||||
(a1, a1): a1
|
||||
})
|
||||
}, "∨")
|
||||
|
||||
|
||||
designated_values = {a1}
|
||||
|
|
@ -117,11 +123,18 @@ interpretation = {
|
|||
|
||||
print(R_model_2)
|
||||
|
||||
print(f"Does {R_model_2.name} satisfy the logic R?", satisfiable(R_logic, R_model_2, interpretation))
|
||||
|
||||
if smt_is_loaded():
|
||||
print(has_vsp(R_model_2, mimplication, True, True))
|
||||
else:
|
||||
print("Z3 not setup, skipping VSP check...")
|
||||
|
||||
|
||||
# =================================
|
||||
|
||||
"""
|
||||
Generate models of R of a specified size
|
||||
Generate models of R of a specified size using the slow approach
|
||||
"""
|
||||
|
||||
print("*" * 30)
|
||||
|
|
@ -130,14 +143,20 @@ model_size = 2
|
|||
print("Generating models of Logic", R_logic.name, "of size", model_size)
|
||||
solutions = generate_model(R_logic, model_size, print_model=False)
|
||||
|
||||
print(f"Found {len(solutions)} satisfiable models")
|
||||
if smt_is_loaded():
|
||||
num_satisfies_vsp = 0
|
||||
for model, interpretation in solutions:
|
||||
negation_defined = Negation in interpretation
|
||||
conj_disj_defined = Conjunction in interpretation and Disjunction in interpretation
|
||||
if has_vsp(model, interpretation[Implication], negation_defined, conj_disj_defined).has_vsp:
|
||||
num_satisfies_vsp += 1
|
||||
|
||||
print(f"Found {len(solutions)} satisfiable models of size {model_size}, {num_satisfies_vsp} of which satisfy VSP")
|
||||
|
||||
# for model, interpretation in solutions:
|
||||
# print(has_vsp(model, interpretation))
|
||||
|
||||
print("*" * 30)
|
||||
|
||||
######
|
||||
# =================================
|
||||
|
||||
"""
|
||||
Showing the smallest model for R that has the
|
||||
|
|
@ -146,12 +165,12 @@ variable sharing property.
|
|||
This model has 6 elements.
|
||||
"""
|
||||
|
||||
a0 = ModelValue("a0")
|
||||
a1 = ModelValue("a1")
|
||||
a2 = ModelValue("a2")
|
||||
a3 = ModelValue("a3")
|
||||
a4 = ModelValue("a4")
|
||||
a5 = ModelValue("a5")
|
||||
a0 = ModelValue("0")
|
||||
a1 = ModelValue("1")
|
||||
a2 = ModelValue("2")
|
||||
a3 = ModelValue("3")
|
||||
a4 = ModelValue("4")
|
||||
a5 = ModelValue("5")
|
||||
|
||||
carrier_set = { a0, a1, a2, a3, a4, a5 }
|
||||
designated_values = {a1, a2, a3, a4, a5 }
|
||||
|
|
@ -312,4 +331,26 @@ interpretation = {
|
|||
|
||||
print(R_model_6)
|
||||
print(f"Model {R_model_6.name} satisfies logic {R_logic.name}?", satisfiable(R_logic, R_model_6, interpretation))
|
||||
# print(has_vsp(R_model_6, interpretation))
|
||||
if smt_is_loaded():
|
||||
print(has_vsp(R_model_6, mimplication, True, True))
|
||||
else:
|
||||
print("Z3 not loaded, skipping VSP check...")
|
||||
|
||||
"""
|
||||
Generate models of R of a specified size using the SMT approach
|
||||
"""
|
||||
|
||||
from vsp import logic_has_vsp
|
||||
|
||||
size = 7
|
||||
print(f"Searching for a model of size {size} which witness VSP...")
|
||||
if smt_is_loaded():
|
||||
solution = logic_has_vsp(R_logic, size)
|
||||
if solution is None:
|
||||
print(f"No models found of size {size} which witness VSP")
|
||||
else:
|
||||
model, vsp_result = solution
|
||||
print(vsp_result)
|
||||
print(model)
|
||||
else:
|
||||
print("Z3 not setup, skipping...")
|
||||
|
|
@ -67,7 +67,7 @@ def only_rules_with(rules: Set[Rule], operation: Operation) -> List[Rule]:
|
|||
|
||||
def possible_interpretations(
|
||||
logic: Logic, carrier_set: Set[ModelValue],
|
||||
designated_values: Set[ModelValue]):
|
||||
designated_values: Set[ModelValue], debug: bool):
|
||||
"""
|
||||
Consider every possible interpretation of operations
|
||||
within the specified logic given the carrier set of
|
||||
|
|
@ -100,7 +100,7 @@ def possible_interpretations(
|
|||
passed_functions = candidate_functions
|
||||
if len(passed_functions) == 0:
|
||||
raise Exception("No interpretation satisfies the axioms for the operation " + str(operation))
|
||||
else:
|
||||
elif debug:
|
||||
print(
|
||||
f"Operation {operation.symbol} has {len(passed_functions)} candidate functions"
|
||||
)
|
||||
|
|
@ -120,7 +120,7 @@ def possible_interpretations(
|
|||
|
||||
def generate_model(
|
||||
logic: Logic, number_elements: int, num_solutions: int = -1,
|
||||
print_model=False) -> List[Tuple[Model, Interpretation]]:
|
||||
print_model=False, debug=False) -> List[Tuple[Model, Interpretation]]:
|
||||
"""
|
||||
Generate the specified number of models that
|
||||
satisfy a logic of a certain size.
|
||||
|
|
@ -136,9 +136,10 @@ def generate_model(
|
|||
|
||||
for designated_values in possible_designated_values:
|
||||
designated_values = set(designated_values)
|
||||
if debug:
|
||||
print("Considering models for designated values", set_to_str(designated_values))
|
||||
|
||||
possible_interps = possible_interpretations(logic, carrier_set, designated_values)
|
||||
possible_interps = possible_interpretations(logic, carrier_set, designated_values, debug)
|
||||
for interpretation in possible_interps:
|
||||
is_valid = True
|
||||
model = Model(carrier_set, set(interpretation.values()), designated_values)
|
||||
|
|
|
|||
2
logic.py
2
logic.py
|
|
@ -85,7 +85,7 @@ class Logic:
|
|||
name: Optional[str] = None):
|
||||
self.operations = operations
|
||||
self.rules = rules
|
||||
self.falsifies = falsifies
|
||||
self.falsifies = falsifies if falsifies is not None else set()
|
||||
self.name = str(abs(hash((
|
||||
frozenset(operations),
|
||||
frozenset(rules)
|
||||
|
|
|
|||
73
smt.py
73
smt.py
|
|
@ -1,18 +1,26 @@
|
|||
from itertools import product
|
||||
from typing import Dict, Generator, Optional, Tuple
|
||||
from typing import Dict, Generator, Optional, Set, Tuple, TYPE_CHECKING
|
||||
|
||||
from logic import Logic, Operation, Rule, PropositionalVariable, Term, OpTerm, get_prop_vars_from_rule
|
||||
from model import Model, ModelValue, ModelFunction
|
||||
|
||||
from z3 import (
|
||||
SMT_LOADED = True
|
||||
try:
|
||||
from z3 import (
|
||||
And, BoolSort, Context, EnumSort, Function, Implies, Or, sat, Solver, z3
|
||||
)
|
||||
)
|
||||
except ImportError:
|
||||
SMT_LOADED = False
|
||||
|
||||
def smt_is_loaded() -> bool:
|
||||
global SMT_LOADED
|
||||
return SMT_LOADED
|
||||
|
||||
def term_to_smt(
|
||||
t: Term,
|
||||
op_mapping: Dict[Operation, z3.FuncDeclRef],
|
||||
var_mapping: Dict[PropositionalVariable, z3.DatatypeRef]
|
||||
) -> z3.DatatypeRef:
|
||||
op_mapping: Dict[Operation, "z3.FuncDeclRef"],
|
||||
var_mapping: Dict[PropositionalVariable, "z3.DatatypeRef"]
|
||||
) -> "z3.DatatypeRef":
|
||||
"""Convert a logic term to its SMT representation."""
|
||||
if isinstance(t, PropositionalVariable):
|
||||
return var_mapping[t]
|
||||
|
|
@ -26,10 +34,10 @@ def term_to_smt(
|
|||
|
||||
def logic_rule_to_smt_constraints(
|
||||
rule: Rule,
|
||||
IsDesignated: z3.FuncDeclRef,
|
||||
IsDesignated: "z3.FuncDeclRef",
|
||||
smt_carrier_set,
|
||||
op_mapping: Dict[Operation, z3.FuncDeclRef]
|
||||
) -> Generator[z3.BoolRef, None, None]:
|
||||
op_mapping: Dict[Operation, "z3.FuncDeclRef"]
|
||||
) -> Generator["z3.BoolRef", None, None]:
|
||||
"""
|
||||
Encode a logic rule as SMT constraints.
|
||||
|
||||
|
|
@ -63,10 +71,10 @@ def logic_rule_to_smt_constraints(
|
|||
|
||||
def logic_falsification_rule_to_smt_constraints(
|
||||
rule: Rule,
|
||||
IsDesignated: z3.FuncDeclRef,
|
||||
IsDesignated: "z3.FuncDeclRef",
|
||||
smt_carrier_set,
|
||||
op_mapping: Dict[Operation, z3.FuncDeclRef]
|
||||
) -> z3.BoolRef:
|
||||
op_mapping: Dict[Operation, "z3.FuncDeclRef"]
|
||||
) -> "z3.BoolRef":
|
||||
"""
|
||||
Encode a falsification rule as an SMT constraint.
|
||||
|
||||
|
|
@ -132,7 +140,7 @@ class SMTLogicEncoder:
|
|||
self.carrier_sort, self.smt_carrier_set = EnumSort("C", element_names, ctx=self.ctx)
|
||||
|
||||
# Create operation functions
|
||||
self.operation_function_map: Dict[Operation, z3.FuncDeclRef] = {}
|
||||
self.operation_function_map: Dict[Operation, "z3.FuncDeclRef"] = {}
|
||||
for operation in logic.operations:
|
||||
self.operation_function_map[operation] = self.create_function(operation.symbol, operation.arity)
|
||||
|
||||
|
|
@ -143,10 +151,10 @@ class SMTLogicEncoder:
|
|||
self._add_logic_constraints()
|
||||
self._add_designation_symmetry_constraints()
|
||||
|
||||
def create_predicate(self, name: str, arity: int) -> z3.FuncDeclRef:
|
||||
def create_predicate(self, name: str, arity: int) -> "z3.FuncDeclRef":
|
||||
return Function(name, *(self.carrier_sort for _ in range(arity)), BoolSort(ctx=self.ctx))
|
||||
|
||||
def create_function(self, name: str, arity: int) -> z3.FuncDeclRef:
|
||||
def create_function(self, name: str, arity: int) -> "z3.FuncDeclRef":
|
||||
return Function(name, *(self.carrier_sort for _ in range(arity + 1)))
|
||||
|
||||
def _add_logic_constraints(self):
|
||||
|
|
@ -171,9 +179,9 @@ class SMTLogicEncoder:
|
|||
)
|
||||
self.solver.add(constraint)
|
||||
|
||||
def extract_model(self, smt_model) -> Model:
|
||||
def extract_model(self, smt_model) -> Tuple[Model, Dict[Operation, ModelFunction]]:
|
||||
"""
|
||||
Extract a Model object from an SMT model.
|
||||
Extract a Model object and interpretation from an SMT model.
|
||||
"""
|
||||
carrier_set = {ModelValue(f"{i}") for i in range(self.size)}
|
||||
|
||||
|
|
@ -185,7 +193,8 @@ class SMTLogicEncoder:
|
|||
designated_values = {ModelValue(str(x)) for x in smt_designated}
|
||||
|
||||
# Extract operation functions
|
||||
model_functions = set()
|
||||
model_functions: Set[ModelFunction] = set()
|
||||
interpretation: Dict[Operation, ModelFunction] = dict()
|
||||
for (operation, smt_function) in self.operation_function_map.items():
|
||||
mapping: Dict[Tuple[ModelValue], ModelValue] = {}
|
||||
for smt_inputs in product(self.smt_carrier_set, repeat=operation.arity):
|
||||
|
|
@ -193,9 +202,12 @@ class SMTLogicEncoder:
|
|||
smt_output = smt_model.evaluate(smt_function(*smt_inputs))
|
||||
model_output = ModelValue(str(smt_output))
|
||||
mapping[model_inputs] = model_output
|
||||
model_functions.add(ModelFunction(operation.arity, mapping, operation.symbol))
|
||||
model_function = ModelFunction(operation.arity, mapping, operation.symbol)
|
||||
model_functions.add(model_function)
|
||||
interpretation[operation] = model_function
|
||||
|
||||
return Model(carrier_set, model_functions, designated_values)
|
||||
|
||||
return Model(carrier_set, model_functions, designated_values), interpretation
|
||||
|
||||
|
||||
def _add_designation_symmetry_constraints(self):
|
||||
|
|
@ -218,7 +230,7 @@ class SMTLogicEncoder:
|
|||
)
|
||||
)
|
||||
|
||||
def create_exclusion_constraint(self, model: Model) -> z3.BoolRef:
|
||||
def create_exclusion_constraint(self, model: Model) -> "z3.BoolRef":
|
||||
"""
|
||||
Create a constraint that excludes the given model from future solutions.
|
||||
"""
|
||||
|
|
@ -254,7 +266,7 @@ class SMTLogicEncoder:
|
|||
|
||||
return Or(constraints)
|
||||
|
||||
def find_model(self) -> Optional[Model]:
|
||||
def find_model(self) -> Optional[Tuple[Model, Dict[Operation, ModelFunction]]]:
|
||||
"""
|
||||
Find a single model satisfying the logic constraints.
|
||||
|
||||
|
|
@ -274,12 +286,12 @@ class SMTLogicEncoder:
|
|||
pass
|
||||
|
||||
|
||||
def find_model(logic: Logic, size: int) -> Optional[Model]:
|
||||
def find_model(logic: Logic, size: int) -> Optional[Tuple[Model, Dict[Operation, ModelFunction]]]:
|
||||
"""Find a single model for the given logic and size."""
|
||||
encoder = SMTLogicEncoder(logic, size)
|
||||
return encoder.find_model()
|
||||
|
||||
def find_all_models(logic: Logic, size: int) -> Generator[Model, None, None]:
|
||||
def find_all_models(logic: Logic, size: int) -> Generator[Tuple[Model, Dict[Operation, ModelFunction]], None, None]:
|
||||
"""
|
||||
Find all models for the given logic and size.
|
||||
|
||||
|
|
@ -294,13 +306,14 @@ def find_all_models(logic: Logic, size: int) -> Generator[Model, None, None]:
|
|||
|
||||
while True:
|
||||
# Try to find a model
|
||||
model = encoder.find_model()
|
||||
if model is None:
|
||||
solution = encoder.find_model()
|
||||
if solution is None:
|
||||
break
|
||||
|
||||
yield model
|
||||
yield solution
|
||||
|
||||
# Add constraint to exclude this model from future solutions
|
||||
model, _ = solution
|
||||
exclusion_constraint = encoder.create_exclusion_constraint(model)
|
||||
encoder.solver.add(exclusion_constraint)
|
||||
|
||||
|
|
@ -346,13 +359,13 @@ class SMTModelEncoder:
|
|||
is_designated = model_value in model.designated_values
|
||||
self.solver.add(self.is_designated(self.model_value_to_smt[model_value]) == is_designated)
|
||||
|
||||
def create_predicate(self, name: str, arity: int) -> z3.FuncDeclRef:
|
||||
def create_predicate(self, name: str, arity: int) -> "z3.FuncDeclRef":
|
||||
return Function(name, *(self.carrier_sort for _ in range(arity)), BoolSort(ctx=self.ctx))
|
||||
|
||||
def create_function(self, name: str, arity: int) -> z3.FuncDeclRef:
|
||||
def create_function(self, name: str, arity: int) -> "z3.FuncDeclRef":
|
||||
return Function(name, *(self.carrier_sort for _ in range(arity + 1)))
|
||||
|
||||
def add_function_constraints_from_table(self, smt_fn: z3.FuncDeclRef, model_fn: ModelFunction):
|
||||
def add_function_constraints_from_table(self, smt_fn: "z3.FuncDeclRef", model_fn: ModelFunction):
|
||||
for inputs, output in model_fn.mapping.items():
|
||||
smt_inputs = tuple(self.model_value_to_smt[inp] for inp in inputs)
|
||||
smt_output = self.model_value_to_smt[output]
|
||||
|
|
|
|||
16
vsp.py
16
vsp.py
|
|
@ -10,12 +10,12 @@ from model import (
|
|||
Model, model_closure, ModelFunction, ModelValue
|
||||
)
|
||||
|
||||
SMT_LOADED = True
|
||||
from smt import SMTModelEncoder, SMTLogicEncoder, smt_is_loaded
|
||||
|
||||
try:
|
||||
from z3 import And, Or, Implies, sat
|
||||
from smt import SMTModelEncoder, SMTLogicEncoder
|
||||
except ImportError:
|
||||
SMT_LOADED = False
|
||||
pass
|
||||
|
||||
class VSP_Result:
|
||||
def __init__(
|
||||
|
|
@ -139,7 +139,7 @@ def has_vsp_smt(model: Model, impfn: ModelFunction) -> VSP_Result:
|
|||
Checks whether a given model satisfies the variable
|
||||
sharing property via SMT
|
||||
"""
|
||||
if not SMT_LOADED:
|
||||
if not smt_is_loaded():
|
||||
raise Exception("Z3 is not property installed, cannot check via SMT")
|
||||
|
||||
encoder = SMTModelEncoder(model)
|
||||
|
|
@ -198,7 +198,7 @@ def has_vsp(model: Model, impfunction: ModelFunction,
|
|||
if model.is_magical:
|
||||
return has_vsp_magical(model, impfunction, negation_defined, conjunction_disjunction_defined)
|
||||
|
||||
return has_vsp_smt(model)
|
||||
return has_vsp_smt(model, impfunction)
|
||||
|
||||
|
||||
def logic_has_vsp(logic: Logic, size: int) -> Optional[Tuple[Model, VSP_Result]]:
|
||||
|
|
@ -254,15 +254,15 @@ def logic_has_vsp(logic: Logic, size: int) -> Optional[Tuple[Model, VSP_Result]]
|
|||
)
|
||||
)
|
||||
|
||||
model = encoder.find_model()
|
||||
solution = encoder.find_model()
|
||||
|
||||
# We failed to find a VSP witness
|
||||
if model is None:
|
||||
if solution is None:
|
||||
return None
|
||||
|
||||
# Otherwise, a matrix model and correspoding
|
||||
# subalgebras exist.
|
||||
|
||||
model, _ = solution
|
||||
smt_model = encoder.solver.model()
|
||||
K1_smt = [x for x in encoder.smt_carrier_set if smt_model.evaluate(IsInK1(x))]
|
||||
K1 = {ModelValue(str(x)) for x in K1_smt}
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue