Updated driver file R.py to showcase SMT techinques

Fixed minor bugs concerning lack of falsification rules and interfaces between VSP and SMT
This commit is contained in:
Brandon Rozek 2026-01-27 12:48:33 -05:00
parent f8eca388d4
commit 6d87793803
5 changed files with 120 additions and 65 deletions

81
R.py
View file

@ -12,7 +12,8 @@ from logic import (
)
from model import Model, ModelFunction, ModelValue, satisfiable
from generate_model import generate_model
# from vsp import has_vsp
from vsp import has_vsp
from smt import smt_is_loaded
# ===================================================
@ -56,12 +57,17 @@ disjunction_rules = {
Rule({Conjunction(x, Disjunction(y, z)),}, Disjunction(Conjunction(x, y), Conjunction(x, z)))
}
falsification_rules = {
# At least one value is non-designated
Rule(set(), x)
}
logic_rules = implication_rules | negation_rules | conjunction_rules | disjunction_rules
operations = {Negation, Conjunction, Disjunction, Implication}
R_logic = Logic(operations, logic_rules, "R")
R_logic = Logic(operations, logic_rules, falsification_rules, "R")
# ===============================
@ -69,36 +75,36 @@ R_logic = Logic(operations, logic_rules, "R")
Example 2-Element Model of R
"""
a0 = ModelValue("a0")
a1 = ModelValue("a1")
a0 = ModelValue("0")
a1 = ModelValue("1")
carrier_set = {a0, a1}
mnegation = ModelFunction(1, {
a0: a1,
a1: a0
})
}, "¬")
mimplication = ModelFunction(2, {
(a0, a0): a1,
(a0, a1): a1,
(a1, a0): a0,
(a1, a1): a1
})
}, "")
mconjunction = ModelFunction(2, {
(a0, a0): a0,
(a0, a1): a0,
(a1, a0): a0,
(a1, a1): a1
})
}, "")
mdisjunction = ModelFunction(2, {
(a0, a0): a0,
(a0, a1): a1,
(a1, a0): a1,
(a1, a1): a1
})
}, "")
designated_values = {a1}
@ -117,11 +123,18 @@ interpretation = {
print(R_model_2)
print(f"Does {R_model_2.name} satisfy the logic R?", satisfiable(R_logic, R_model_2, interpretation))
if smt_is_loaded():
print(has_vsp(R_model_2, mimplication, True, True))
else:
print("Z3 not setup, skipping VSP check...")
# =================================
"""
Generate models of R of a specified size
Generate models of R of a specified size using the slow approach
"""
print("*" * 30)
@ -130,14 +143,20 @@ model_size = 2
print("Generating models of Logic", R_logic.name, "of size", model_size)
solutions = generate_model(R_logic, model_size, print_model=False)
print(f"Found {len(solutions)} satisfiable models")
if smt_is_loaded():
num_satisfies_vsp = 0
for model, interpretation in solutions:
negation_defined = Negation in interpretation
conj_disj_defined = Conjunction in interpretation and Disjunction in interpretation
if has_vsp(model, interpretation[Implication], negation_defined, conj_disj_defined).has_vsp:
num_satisfies_vsp += 1
print(f"Found {len(solutions)} satisfiable models of size {model_size}, {num_satisfies_vsp} of which satisfy VSP")
# for model, interpretation in solutions:
# print(has_vsp(model, interpretation))
print("*" * 30)
######
# =================================
"""
Showing the smallest model for R that has the
@ -146,12 +165,12 @@ variable sharing property.
This model has 6 elements.
"""
a0 = ModelValue("a0")
a1 = ModelValue("a1")
a2 = ModelValue("a2")
a3 = ModelValue("a3")
a4 = ModelValue("a4")
a5 = ModelValue("a5")
a0 = ModelValue("0")
a1 = ModelValue("1")
a2 = ModelValue("2")
a3 = ModelValue("3")
a4 = ModelValue("4")
a5 = ModelValue("5")
carrier_set = { a0, a1, a2, a3, a4, a5 }
designated_values = {a1, a2, a3, a4, a5 }
@ -312,4 +331,26 @@ interpretation = {
print(R_model_6)
print(f"Model {R_model_6.name} satisfies logic {R_logic.name}?", satisfiable(R_logic, R_model_6, interpretation))
# print(has_vsp(R_model_6, interpretation))
if smt_is_loaded():
print(has_vsp(R_model_6, mimplication, True, True))
else:
print("Z3 not loaded, skipping VSP check...")
"""
Generate models of R of a specified size using the SMT approach
"""
from vsp import logic_has_vsp
size = 7
print(f"Searching for a model of size {size} which witness VSP...")
if smt_is_loaded():
solution = logic_has_vsp(R_logic, size)
if solution is None:
print(f"No models found of size {size} which witness VSP")
else:
model, vsp_result = solution
print(vsp_result)
print(model)
else:
print("Z3 not setup, skipping...")

View file

@ -67,7 +67,7 @@ def only_rules_with(rules: Set[Rule], operation: Operation) -> List[Rule]:
def possible_interpretations(
logic: Logic, carrier_set: Set[ModelValue],
designated_values: Set[ModelValue]):
designated_values: Set[ModelValue], debug: bool):
"""
Consider every possible interpretation of operations
within the specified logic given the carrier set of
@ -100,7 +100,7 @@ def possible_interpretations(
passed_functions = candidate_functions
if len(passed_functions) == 0:
raise Exception("No interpretation satisfies the axioms for the operation " + str(operation))
else:
elif debug:
print(
f"Operation {operation.symbol} has {len(passed_functions)} candidate functions"
)
@ -120,7 +120,7 @@ def possible_interpretations(
def generate_model(
logic: Logic, number_elements: int, num_solutions: int = -1,
print_model=False) -> List[Tuple[Model, Interpretation]]:
print_model=False, debug=False) -> List[Tuple[Model, Interpretation]]:
"""
Generate the specified number of models that
satisfy a logic of a certain size.
@ -136,9 +136,10 @@ def generate_model(
for designated_values in possible_designated_values:
designated_values = set(designated_values)
if debug:
print("Considering models for designated values", set_to_str(designated_values))
possible_interps = possible_interpretations(logic, carrier_set, designated_values)
possible_interps = possible_interpretations(logic, carrier_set, designated_values, debug)
for interpretation in possible_interps:
is_valid = True
model = Model(carrier_set, set(interpretation.values()), designated_values)

View file

@ -85,7 +85,7 @@ class Logic:
name: Optional[str] = None):
self.operations = operations
self.rules = rules
self.falsifies = falsifies
self.falsifies = falsifies if falsifies is not None else set()
self.name = str(abs(hash((
frozenset(operations),
frozenset(rules)

69
smt.py
View file

@ -1,18 +1,26 @@
from itertools import product
from typing import Dict, Generator, Optional, Tuple
from typing import Dict, Generator, Optional, Set, Tuple, TYPE_CHECKING
from logic import Logic, Operation, Rule, PropositionalVariable, Term, OpTerm, get_prop_vars_from_rule
from model import Model, ModelValue, ModelFunction
SMT_LOADED = True
try:
from z3 import (
And, BoolSort, Context, EnumSort, Function, Implies, Or, sat, Solver, z3
)
except ImportError:
SMT_LOADED = False
def smt_is_loaded() -> bool:
global SMT_LOADED
return SMT_LOADED
def term_to_smt(
t: Term,
op_mapping: Dict[Operation, z3.FuncDeclRef],
var_mapping: Dict[PropositionalVariable, z3.DatatypeRef]
) -> z3.DatatypeRef:
op_mapping: Dict[Operation, "z3.FuncDeclRef"],
var_mapping: Dict[PropositionalVariable, "z3.DatatypeRef"]
) -> "z3.DatatypeRef":
"""Convert a logic term to its SMT representation."""
if isinstance(t, PropositionalVariable):
return var_mapping[t]
@ -26,10 +34,10 @@ def term_to_smt(
def logic_rule_to_smt_constraints(
rule: Rule,
IsDesignated: z3.FuncDeclRef,
IsDesignated: "z3.FuncDeclRef",
smt_carrier_set,
op_mapping: Dict[Operation, z3.FuncDeclRef]
) -> Generator[z3.BoolRef, None, None]:
op_mapping: Dict[Operation, "z3.FuncDeclRef"]
) -> Generator["z3.BoolRef", None, None]:
"""
Encode a logic rule as SMT constraints.
@ -63,10 +71,10 @@ def logic_rule_to_smt_constraints(
def logic_falsification_rule_to_smt_constraints(
rule: Rule,
IsDesignated: z3.FuncDeclRef,
IsDesignated: "z3.FuncDeclRef",
smt_carrier_set,
op_mapping: Dict[Operation, z3.FuncDeclRef]
) -> z3.BoolRef:
op_mapping: Dict[Operation, "z3.FuncDeclRef"]
) -> "z3.BoolRef":
"""
Encode a falsification rule as an SMT constraint.
@ -132,7 +140,7 @@ class SMTLogicEncoder:
self.carrier_sort, self.smt_carrier_set = EnumSort("C", element_names, ctx=self.ctx)
# Create operation functions
self.operation_function_map: Dict[Operation, z3.FuncDeclRef] = {}
self.operation_function_map: Dict[Operation, "z3.FuncDeclRef"] = {}
for operation in logic.operations:
self.operation_function_map[operation] = self.create_function(operation.symbol, operation.arity)
@ -143,10 +151,10 @@ class SMTLogicEncoder:
self._add_logic_constraints()
self._add_designation_symmetry_constraints()
def create_predicate(self, name: str, arity: int) -> z3.FuncDeclRef:
def create_predicate(self, name: str, arity: int) -> "z3.FuncDeclRef":
return Function(name, *(self.carrier_sort for _ in range(arity)), BoolSort(ctx=self.ctx))
def create_function(self, name: str, arity: int) -> z3.FuncDeclRef:
def create_function(self, name: str, arity: int) -> "z3.FuncDeclRef":
return Function(name, *(self.carrier_sort for _ in range(arity + 1)))
def _add_logic_constraints(self):
@ -171,9 +179,9 @@ class SMTLogicEncoder:
)
self.solver.add(constraint)
def extract_model(self, smt_model) -> Model:
def extract_model(self, smt_model) -> Tuple[Model, Dict[Operation, ModelFunction]]:
"""
Extract a Model object from an SMT model.
Extract a Model object and interpretation from an SMT model.
"""
carrier_set = {ModelValue(f"{i}") for i in range(self.size)}
@ -185,7 +193,8 @@ class SMTLogicEncoder:
designated_values = {ModelValue(str(x)) for x in smt_designated}
# Extract operation functions
model_functions = set()
model_functions: Set[ModelFunction] = set()
interpretation: Dict[Operation, ModelFunction] = dict()
for (operation, smt_function) in self.operation_function_map.items():
mapping: Dict[Tuple[ModelValue], ModelValue] = {}
for smt_inputs in product(self.smt_carrier_set, repeat=operation.arity):
@ -193,9 +202,12 @@ class SMTLogicEncoder:
smt_output = smt_model.evaluate(smt_function(*smt_inputs))
model_output = ModelValue(str(smt_output))
mapping[model_inputs] = model_output
model_functions.add(ModelFunction(operation.arity, mapping, operation.symbol))
model_function = ModelFunction(operation.arity, mapping, operation.symbol)
model_functions.add(model_function)
interpretation[operation] = model_function
return Model(carrier_set, model_functions, designated_values)
return Model(carrier_set, model_functions, designated_values), interpretation
def _add_designation_symmetry_constraints(self):
@ -218,7 +230,7 @@ class SMTLogicEncoder:
)
)
def create_exclusion_constraint(self, model: Model) -> z3.BoolRef:
def create_exclusion_constraint(self, model: Model) -> "z3.BoolRef":
"""
Create a constraint that excludes the given model from future solutions.
"""
@ -254,7 +266,7 @@ class SMTLogicEncoder:
return Or(constraints)
def find_model(self) -> Optional[Model]:
def find_model(self) -> Optional[Tuple[Model, Dict[Operation, ModelFunction]]]:
"""
Find a single model satisfying the logic constraints.
@ -274,12 +286,12 @@ class SMTLogicEncoder:
pass
def find_model(logic: Logic, size: int) -> Optional[Model]:
def find_model(logic: Logic, size: int) -> Optional[Tuple[Model, Dict[Operation, ModelFunction]]]:
"""Find a single model for the given logic and size."""
encoder = SMTLogicEncoder(logic, size)
return encoder.find_model()
def find_all_models(logic: Logic, size: int) -> Generator[Model, None, None]:
def find_all_models(logic: Logic, size: int) -> Generator[Tuple[Model, Dict[Operation, ModelFunction]], None, None]:
"""
Find all models for the given logic and size.
@ -294,13 +306,14 @@ def find_all_models(logic: Logic, size: int) -> Generator[Model, None, None]:
while True:
# Try to find a model
model = encoder.find_model()
if model is None:
solution = encoder.find_model()
if solution is None:
break
yield model
yield solution
# Add constraint to exclude this model from future solutions
model, _ = solution
exclusion_constraint = encoder.create_exclusion_constraint(model)
encoder.solver.add(exclusion_constraint)
@ -346,13 +359,13 @@ class SMTModelEncoder:
is_designated = model_value in model.designated_values
self.solver.add(self.is_designated(self.model_value_to_smt[model_value]) == is_designated)
def create_predicate(self, name: str, arity: int) -> z3.FuncDeclRef:
def create_predicate(self, name: str, arity: int) -> "z3.FuncDeclRef":
return Function(name, *(self.carrier_sort for _ in range(arity)), BoolSort(ctx=self.ctx))
def create_function(self, name: str, arity: int) -> z3.FuncDeclRef:
def create_function(self, name: str, arity: int) -> "z3.FuncDeclRef":
return Function(name, *(self.carrier_sort for _ in range(arity + 1)))
def add_function_constraints_from_table(self, smt_fn: z3.FuncDeclRef, model_fn: ModelFunction):
def add_function_constraints_from_table(self, smt_fn: "z3.FuncDeclRef", model_fn: ModelFunction):
for inputs, output in model_fn.mapping.items():
smt_inputs = tuple(self.model_value_to_smt[inp] for inp in inputs)
smt_output = self.model_value_to_smt[output]

16
vsp.py
View file

@ -10,12 +10,12 @@ from model import (
Model, model_closure, ModelFunction, ModelValue
)
SMT_LOADED = True
from smt import SMTModelEncoder, SMTLogicEncoder, smt_is_loaded
try:
from z3 import And, Or, Implies, sat
from smt import SMTModelEncoder, SMTLogicEncoder
except ImportError:
SMT_LOADED = False
pass
class VSP_Result:
def __init__(
@ -139,7 +139,7 @@ def has_vsp_smt(model: Model, impfn: ModelFunction) -> VSP_Result:
Checks whether a given model satisfies the variable
sharing property via SMT
"""
if not SMT_LOADED:
if not smt_is_loaded():
raise Exception("Z3 is not property installed, cannot check via SMT")
encoder = SMTModelEncoder(model)
@ -198,7 +198,7 @@ def has_vsp(model: Model, impfunction: ModelFunction,
if model.is_magical:
return has_vsp_magical(model, impfunction, negation_defined, conjunction_disjunction_defined)
return has_vsp_smt(model)
return has_vsp_smt(model, impfunction)
def logic_has_vsp(logic: Logic, size: int) -> Optional[Tuple[Model, VSP_Result]]:
@ -254,15 +254,15 @@ def logic_has_vsp(logic: Logic, size: int) -> Optional[Tuple[Model, VSP_Result]]
)
)
model = encoder.find_model()
solution = encoder.find_model()
# We failed to find a VSP witness
if model is None:
if solution is None:
return None
# Otherwise, a matrix model and correspoding
# subalgebras exist.
model, _ = solution
smt_model = encoder.solver.model()
K1_smt = [x for x in encoder.smt_carrier_set if smt_model.evaluate(IsInK1(x))]
K1 = {ModelValue(str(x)) for x in K1_smt}