mirror of
				https://github.com/Brandon-Rozek/matmod.git
				synced 2025-11-03 03:11:12 +00:00 
			
		
		
		
	Implementing optimization #14
Discard subalgebras which are order-dependent
This commit is contained in:
		
							parent
							
								
									9f80fb8bba
								
							
						
					
					
						commit
						4b907281a5
					
				
					 3 changed files with 43 additions and 6 deletions
				
			
		
							
								
								
									
										16
									
								
								model.py
									
										
									
									
									
								
							
							
						
						
									
										16
									
								
								model.py
									
										
									
									
									
								
							| 
						 | 
				
			
			@ -103,18 +103,34 @@ def binary_function_str(f: ModelFunction) -> str:
 | 
			
		|||
 | 
			
		||||
Interpretation = Dict[Operation, ModelFunction]
 | 
			
		||||
 | 
			
		||||
class OrderTable:
 | 
			
		||||
    def __init__(self):
 | 
			
		||||
        self.ordering = set()
 | 
			
		||||
 | 
			
		||||
    def add(self, x, y):
 | 
			
		||||
        """
 | 
			
		||||
        Add x <= y
 | 
			
		||||
        """
 | 
			
		||||
        self.ordering.add((x, y))
 | 
			
		||||
 | 
			
		||||
    def is_lt(self, x, y):
 | 
			
		||||
        return (x, y) in self.ordering
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class Model:
 | 
			
		||||
    def __init__(
 | 
			
		||||
            self,
 | 
			
		||||
            carrier_set: Set[ModelValue],
 | 
			
		||||
            logical_operations: Set[ModelFunction],
 | 
			
		||||
            designated_values: Set[ModelValue],
 | 
			
		||||
            ordering: Optional[OrderTable] = None,
 | 
			
		||||
            name: Optional[str] = None
 | 
			
		||||
    ):
 | 
			
		||||
        assert designated_values <= carrier_set
 | 
			
		||||
        self.carrier_set = carrier_set
 | 
			
		||||
        self.logical_operations = logical_operations
 | 
			
		||||
        self.designated_values = designated_values
 | 
			
		||||
        self.ordering = ordering
 | 
			
		||||
        self.name = str(abs(hash((
 | 
			
		||||
            frozenset(carrier_set),
 | 
			
		||||
            frozenset(logical_operations),
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
| 
						 | 
				
			
			@ -6,7 +6,7 @@ Assumes the base logic is R with no extra connectives
 | 
			
		|||
import re
 | 
			
		||||
from typing import TextIO, List, Optional, Tuple, Set, Dict
 | 
			
		||||
 | 
			
		||||
from model import Model, ModelValue, ModelFunction
 | 
			
		||||
from model import Model, ModelValue, ModelFunction, OrderTable
 | 
			
		||||
from logic import (
 | 
			
		||||
    Implication,
 | 
			
		||||
    Conjunction,
 | 
			
		||||
| 
						 | 
				
			
			@ -65,6 +65,7 @@ class ModelBuilder:
 | 
			
		|||
        self.size : int = 0
 | 
			
		||||
        self.carrier_set : Set[ModelValue] = set()
 | 
			
		||||
        self.mnegation: Optional[ModelFunction] = None
 | 
			
		||||
        self.ordering: Optional[OrderTable] = None
 | 
			
		||||
        self.mconjunction: Optional[ModelFunction] = None
 | 
			
		||||
        self.mdisjunction: Optional[ModelFunction] = None
 | 
			
		||||
        self.designated_values: Set[ModelValue] = set()
 | 
			
		||||
| 
						 | 
				
			
			@ -278,7 +279,8 @@ def process_orders(infile: SourceFile, current_model_parts: ModelBuilder) -> boo
 | 
			
		|||
    if result is None:
 | 
			
		||||
        return False
 | 
			
		||||
 | 
			
		||||
    mconjunction, mdisjunction = result
 | 
			
		||||
    ordering, mconjunction, mdisjunction = result
 | 
			
		||||
    current_model_parts.ordering = ordering
 | 
			
		||||
    current_model_parts.mconjunction = mconjunction
 | 
			
		||||
    current_model_parts.mdisjunction = mdisjunction
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -334,7 +336,7 @@ def process_model(model_name: str, mp: ModelBuilder,  solutions: List[Tuple[Mode
 | 
			
		|||
    assert mp.mimplication is not None
 | 
			
		||||
 | 
			
		||||
    logical_operations = { mp.mimplication }
 | 
			
		||||
    model = Model(mp.carrier_set, logical_operations, mp.designated_values, name=model_name)
 | 
			
		||||
    model = Model(mp.carrier_set, logical_operations, mp.designated_values, ordering=mp.ordering, name=model_name)
 | 
			
		||||
    interpretation = {
 | 
			
		||||
        Implication: mp.mimplication
 | 
			
		||||
    }
 | 
			
		||||
| 
						 | 
				
			
			@ -466,7 +468,7 @@ def determine_dresult(size: int, ordering: Dict[ModelValue, ModelValue], a: Mode
 | 
			
		|||
        if not invalid:
 | 
			
		||||
            return c
 | 
			
		||||
 | 
			
		||||
def parse_single_order(infile: SourceFile, size: int) -> Optional[Tuple[ModelFunction, ModelFunction]]:
 | 
			
		||||
def parse_single_order(infile: SourceFile, size: int) -> Optional[Tuple[OrderTable, ModelFunction, ModelFunction]]:
 | 
			
		||||
    """
 | 
			
		||||
    Parse the line representing the ordering table
 | 
			
		||||
    """
 | 
			
		||||
| 
						 | 
				
			
			@ -478,6 +480,7 @@ def parse_single_order(infile: SourceFile, size: int) -> Optional[Tuple[ModelFun
 | 
			
		|||
 | 
			
		||||
    assert len(table) == (size + 1)**2, f"Order table doesn't match expected size at line {infile.current_line}"
 | 
			
		||||
 | 
			
		||||
    ordering = OrderTable()
 | 
			
		||||
    omapping = {}
 | 
			
		||||
    table_i = 0
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -486,6 +489,8 @@ def parse_single_order(infile: SourceFile, size: int) -> Optional[Tuple[ModelFun
 | 
			
		|||
        for j in range(size + 1):
 | 
			
		||||
            y = mvalue_from_index(j)
 | 
			
		||||
            omapping[(x, y)] = table[table_i] == '1'
 | 
			
		||||
            if table[table_i] == '1':
 | 
			
		||||
                ordering.add(x, y)
 | 
			
		||||
            table_i += 1
 | 
			
		||||
 | 
			
		||||
    cmapping = {}
 | 
			
		||||
| 
						 | 
				
			
			@ -514,7 +519,7 @@ def parse_single_order(infile: SourceFile, size: int) -> Optional[Tuple[ModelFun
 | 
			
		|||
    mconjunction = ModelFunction(2, cmapping, "∧")
 | 
			
		||||
    mdisjunction = ModelFunction(2, dmapping, "∨")
 | 
			
		||||
 | 
			
		||||
    return mconjunction, mdisjunction
 | 
			
		||||
    return ordering, mconjunction, mdisjunction
 | 
			
		||||
 | 
			
		||||
def parse_single_designated(infile: SourceFile, size: int) -> Optional[Set[ModelValue]]:
 | 
			
		||||
    """
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
							
								
								
									
										18
									
								
								vsp.py
									
										
									
									
									
								
							
							
						
						
									
										18
									
								
								vsp.py
									
										
									
									
									
								
							| 
						 | 
				
			
			@ -6,7 +6,7 @@ from itertools import chain, combinations, product
 | 
			
		|||
from typing import Dict, List, Optional, Set, Tuple
 | 
			
		||||
from common import set_to_str
 | 
			
		||||
from model import (
 | 
			
		||||
    Model, model_closure, ModelFunction, ModelValue
 | 
			
		||||
    Model, model_closure, ModelFunction, ModelValue, OrderTable
 | 
			
		||||
)
 | 
			
		||||
from logic import Conjunction, Disjunction, Implication, Operation
 | 
			
		||||
 | 
			
		||||
| 
						 | 
				
			
			@ -79,6 +79,15 @@ def find_bottom(algebra: Set[ModelValue], mconjunction: Optional[ModelFunction],
 | 
			
		|||
    print("[Warning] Failed to find the bottom of the lattice")
 | 
			
		||||
    return None
 | 
			
		||||
 | 
			
		||||
def order_dependent(subalgebra1: Set[ModelValue], subalegbra2: Set[ModelValue], ordering: OrderTable):
 | 
			
		||||
    """
 | 
			
		||||
    Returns true if there exists a value in subalgebra1 that's less than a value in subalgebra2
 | 
			
		||||
    """
 | 
			
		||||
    for x in subalgebra1:
 | 
			
		||||
        for y in subalegbra2:
 | 
			
		||||
            if ordering.is_lt(x, y):
 | 
			
		||||
                return True
 | 
			
		||||
    return False
 | 
			
		||||
 | 
			
		||||
class VSP_Result:
 | 
			
		||||
    def __init__(
 | 
			
		||||
| 
						 | 
				
			
			@ -111,6 +120,8 @@ def has_vsp(model: Model, impfunction: ModelFunction, mconjunction: Optional[Mod
 | 
			
		|||
    if len(model.designated_values) == 1:
 | 
			
		||||
        return VSP_Result(False, model.name)
 | 
			
		||||
 | 
			
		||||
    assert model.ordering is not None, "Expected ordering table in model"
 | 
			
		||||
 | 
			
		||||
    # Compute I the set of tuples (x, y) where
 | 
			
		||||
    # x -> y does not take a designiated value
 | 
			
		||||
    I: Set[Tuple[ModelValue, ModelValue]] = set()
 | 
			
		||||
| 
						 | 
				
			
			@ -158,6 +169,11 @@ def has_vsp(model: Model, impfunction: ModelFunction, mconjunction: Optional[Mod
 | 
			
		|||
        if bottom is not None and bottom in xs:
 | 
			
		||||
            continue
 | 
			
		||||
 | 
			
		||||
        # NOTE: Optimization
 | 
			
		||||
        # If the subalgebras are order-dependent, skip this pair
 | 
			
		||||
        if order_dependent(xs, ys, model.ordering):
 | 
			
		||||
            continue
 | 
			
		||||
 | 
			
		||||
        # Compute the closure of all operations
 | 
			
		||||
        # with just the xs
 | 
			
		||||
        carrier_set_left: Set[ModelValue] = model_closure(xs, model.logical_operations, bottom)
 | 
			
		||||
| 
						 | 
				
			
			
 | 
			
		|||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue