mirror of
https://github.com/Brandon-Rozek/matmod.git
synced 2025-12-09 04:30:24 +00:00
Merge bb2024d254 into 2fbdf26274
This commit is contained in:
commit
2a8194adb4
2 changed files with 606 additions and 2 deletions
220
svspursuer.py
Executable file
220
svspursuer.py
Executable file
|
|
@ -0,0 +1,220 @@
|
||||||
|
#!/usr/bin/env python3
|
||||||
|
"""
|
||||||
|
Experimental Runner file to find the signed variable sharing property
|
||||||
|
"""
|
||||||
|
|
||||||
|
|
||||||
|
from datetime import datetime
|
||||||
|
from typing import Dict, Iterator, Optional, Tuple
|
||||||
|
from queue import Empty as QueueEmpty
|
||||||
|
import argparse
|
||||||
|
import multiprocessing as mp
|
||||||
|
|
||||||
|
from logic import Negation, Implication, Operation, Conjunction, Disjunction
|
||||||
|
from model import Model, ModelFunction
|
||||||
|
from parse_magic import SourceFile, parse_matrices
|
||||||
|
from vsp import has_svsp, SVSP_Result
|
||||||
|
|
||||||
|
def print_with_timestamp(message):
|
||||||
|
current_time = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
||||||
|
print(f"[{current_time}] {message}", flush=True)
|
||||||
|
|
||||||
|
def restructure_solutions(solutions: Iterator[Tuple[Model, Dict[Operation, ModelFunction]]], skip_to: Optional[str]) -> \
|
||||||
|
Iterator[Tuple[Model, ModelFunction, Optional[ModelFunction], Optional[ModelFunction], Optional[ModelFunction]]]:
|
||||||
|
"""
|
||||||
|
When subprocess gets spawned, the logical operations will
|
||||||
|
have a different memory address than what's expected in interpretation.
|
||||||
|
Therefore, we need to pass the model functions directly instead.
|
||||||
|
|
||||||
|
While we're at it, filter out models until we get to --skip-to
|
||||||
|
if applicable.
|
||||||
|
"""
|
||||||
|
start_processing = skip_to is None
|
||||||
|
for model, interpretation in solutions:
|
||||||
|
# If skip_to is defined, then don't process models
|
||||||
|
# until then.
|
||||||
|
if not start_processing and model.name != skip_to:
|
||||||
|
continue
|
||||||
|
start_processing = True
|
||||||
|
|
||||||
|
# NOTE: Implication must be defined, the rest may not
|
||||||
|
impfunction = interpretation[Implication]
|
||||||
|
conjfn = interpretation.get(Conjunction)
|
||||||
|
disjfn = interpretation.get(Disjunction)
|
||||||
|
negfn = interpretation.get(Negation)
|
||||||
|
yield (model, impfunction, conjfn, disjfn, negfn)
|
||||||
|
|
||||||
|
def has_svsp_plus_model(model, impfn, conjfn, disjfn, negfn) -> Tuple[Optional[Model], SVSP_Result]:
|
||||||
|
"""
|
||||||
|
Wrapper which also stores the models along with its vsp result
|
||||||
|
"""
|
||||||
|
svsp_result = has_svsp(model, impfn, conjfn, disjfn, negfn)
|
||||||
|
# NOTE: Memory optimization - Don't return model if it doesn't have SVSP
|
||||||
|
model = model if svsp_result.has_svsp else None
|
||||||
|
return (model, svsp_result)
|
||||||
|
|
||||||
|
def worker_vsp(task_queue: mp.Queue, result_queue: mp.Queue):
|
||||||
|
"""
|
||||||
|
Worker process which processes models from the task
|
||||||
|
queue and adds the result to the result_queue.
|
||||||
|
|
||||||
|
Adds the sentinal value None when exception occurs and when there's
|
||||||
|
no more to process.
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
while True:
|
||||||
|
task = task_queue.get()
|
||||||
|
# If sentinal value, break
|
||||||
|
if task is None:
|
||||||
|
break
|
||||||
|
(model, impfn, conjfn, disjfn, negfn) = task
|
||||||
|
result = has_svsp_plus_model(model, impfn, conjfn, disjfn, negfn)
|
||||||
|
result_queue.put(result)
|
||||||
|
finally:
|
||||||
|
# Either an exception occured or the worker finished
|
||||||
|
# Push sentinal value
|
||||||
|
result_queue.put(None)
|
||||||
|
|
||||||
|
def worker_parser(data_file_path: str, num_sentinal_values: int, task_queue: mp.Queue, skip_to: Optional[str]):
|
||||||
|
"""
|
||||||
|
Function which parses the MaGIC file
|
||||||
|
and adds models to the task_queue.
|
||||||
|
|
||||||
|
Intended to be deployed with a dedicated process.
|
||||||
|
"""
|
||||||
|
try:
|
||||||
|
data_file = open(data_file_path, "r")
|
||||||
|
solutions = parse_matrices(SourceFile(data_file))
|
||||||
|
solutions = restructure_solutions(solutions, skip_to)
|
||||||
|
|
||||||
|
while True:
|
||||||
|
try:
|
||||||
|
item = next(solutions)
|
||||||
|
task_queue.put(item)
|
||||||
|
except StopIteration:
|
||||||
|
break
|
||||||
|
finally:
|
||||||
|
data_file.close()
|
||||||
|
for _ in range(num_sentinal_values):
|
||||||
|
task_queue.put(None)
|
||||||
|
|
||||||
|
def multi_process_runner(num_cpu: int, data_file_path: str, skip_to: Optional[str]):
|
||||||
|
"""
|
||||||
|
Run SVSPursuer in a multi-process configuration.
|
||||||
|
"""
|
||||||
|
assert num_cpu > 1
|
||||||
|
|
||||||
|
num_tested = 0
|
||||||
|
num_has_svsp = 0
|
||||||
|
num_workers = num_cpu - 1
|
||||||
|
|
||||||
|
# Create queues
|
||||||
|
task_queue = mp.Queue(maxsize=1000)
|
||||||
|
result_queue = mp.Queue()
|
||||||
|
|
||||||
|
# Create dedicated process to parse the MaGIC file
|
||||||
|
process_parser = mp.Process(target=worker_parser, args=(data_file_path, num_workers, task_queue, skip_to))
|
||||||
|
process_parser.start()
|
||||||
|
|
||||||
|
# Create dedicated processes which check SVSP
|
||||||
|
process_workers = []
|
||||||
|
for _ in range(num_workers):
|
||||||
|
p = mp.Process(target=worker_vsp, args=(task_queue, result_queue))
|
||||||
|
process_workers.append(p)
|
||||||
|
p.start()
|
||||||
|
|
||||||
|
|
||||||
|
# Check results and add new tasks until finished
|
||||||
|
result_sentinal_count = 0
|
||||||
|
while True:
|
||||||
|
# Read a result
|
||||||
|
try:
|
||||||
|
result = result_queue.get(True, 60)
|
||||||
|
except QueueEmpty:
|
||||||
|
if all((not p.is_alive() for p in process_workers)):
|
||||||
|
# All workers finished without us receiving all the
|
||||||
|
# sentinal values.
|
||||||
|
break
|
||||||
|
|
||||||
|
task_queue_size = 0
|
||||||
|
try:
|
||||||
|
task_queue_size = task_queue.qsize()
|
||||||
|
except NotImplementedError:
|
||||||
|
# MacOS doesn't implement this
|
||||||
|
pass
|
||||||
|
|
||||||
|
if task_queue_size == 0 and not process_parser.is_alive():
|
||||||
|
# For Linux/Windows this means that the process_parser
|
||||||
|
# died before sending the sentinal values.
|
||||||
|
# For Mac, this doesn't guarentee anything but might
|
||||||
|
# as well push more sentinal values.
|
||||||
|
for _ in range(num_workers):
|
||||||
|
task_queue.put(None)
|
||||||
|
|
||||||
|
# Don't do anymore work, wait again for a result
|
||||||
|
continue
|
||||||
|
|
||||||
|
|
||||||
|
# When we receive None, it means a child process has finished
|
||||||
|
if result is None:
|
||||||
|
result_sentinal_count += 1
|
||||||
|
# If all workers have finished break
|
||||||
|
if result_sentinal_count == len(process_workers):
|
||||||
|
break
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Process result
|
||||||
|
model, vsp_result = result
|
||||||
|
print_with_timestamp(vsp_result)
|
||||||
|
num_tested += 1
|
||||||
|
|
||||||
|
if vsp_result.has_svsp:
|
||||||
|
print(model)
|
||||||
|
|
||||||
|
if vsp_result.has_svsp:
|
||||||
|
num_has_svsp += 1
|
||||||
|
|
||||||
|
print_with_timestamp(f"Tested {num_tested} models, {num_has_svsp} of which satisfy SVSP")
|
||||||
|
|
||||||
|
def single_process_runner(data_file_path: str, skip_to: Optional[str]):
|
||||||
|
num_tested = 0
|
||||||
|
num_has_svsp = 0
|
||||||
|
|
||||||
|
data_file = open(data_file_path, "r")
|
||||||
|
solutions = parse_matrices(SourceFile(data_file))
|
||||||
|
solutions = restructure_solutions(solutions, skip_to)
|
||||||
|
|
||||||
|
for model, impfn, conjfn, disjfn, negfn in solutions:
|
||||||
|
model, svsp_result = has_svsp_plus_model(model, impfn, conjfn, disjfn, negfn)
|
||||||
|
print_with_timestamp(svsp_result)
|
||||||
|
num_tested += 1
|
||||||
|
|
||||||
|
if svsp_result.has_svsp:
|
||||||
|
print(model)
|
||||||
|
|
||||||
|
if svsp_result.has_svsp:
|
||||||
|
num_has_svsp += 1
|
||||||
|
|
||||||
|
print_with_timestamp(f"Tested {num_tested} models, {num_has_svsp} of which satisfy SVSP")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
parser = argparse.ArgumentParser(description="SVSP Checker")
|
||||||
|
parser.add_argument("--verbose", action='store_true', help="Print out all parsed matrices")
|
||||||
|
parser.add_argument("-i", type=str, help="Path to MaGIC ugly data file")
|
||||||
|
parser.add_argument("-c", type=int, help="Number of CPUs to use. Default: 1")
|
||||||
|
parser.add_argument("--skip-to", type=str, help="Skip until a model name is found and process from then onwards.")
|
||||||
|
args = vars(parser.parse_args())
|
||||||
|
|
||||||
|
data_file_path = args.get("i")
|
||||||
|
if data_file_path is None:
|
||||||
|
data_file_path = input("Path to MaGIC Ugly Data File: ")
|
||||||
|
|
||||||
|
num_cpu = args.get("c")
|
||||||
|
if num_cpu is None:
|
||||||
|
num_cpu = 1
|
||||||
|
|
||||||
|
if num_cpu == 1:
|
||||||
|
single_process_runner(data_file_path, args.get("skip_to"))
|
||||||
|
else:
|
||||||
|
multi_process_runner(num_cpu, data_file_path, args.get("skip_to"))
|
||||||
388
vsp.py
388
vsp.py
|
|
@ -2,8 +2,8 @@
|
||||||
Check to see if the model has the variable
|
Check to see if the model has the variable
|
||||||
sharing property.
|
sharing property.
|
||||||
"""
|
"""
|
||||||
from itertools import product
|
from itertools import product, chain, combinations
|
||||||
from typing import List, Optional, Set, Tuple
|
from typing import List, Generator, Optional, Set, Tuple
|
||||||
from common import set_to_str
|
from common import set_to_str
|
||||||
from model import (
|
from model import (
|
||||||
Model, model_closure, ModelFunction, ModelValue
|
Model, model_closure, ModelFunction, ModelValue
|
||||||
|
|
@ -121,3 +121,387 @@ def has_vsp(model: Model, impfunction: ModelFunction,
|
||||||
return VSP_Result(True, model.name, carrier_set_left, carrier_set_right)
|
return VSP_Result(True, model.name, carrier_set_left, carrier_set_right)
|
||||||
|
|
||||||
return VSP_Result(False, model.name)
|
return VSP_Result(False, model.name)
|
||||||
|
|
||||||
|
|
||||||
|
class SVSP_Result:
|
||||||
|
def __init__(
|
||||||
|
self, has_svsp: bool, model_name: Optional[str] = None,
|
||||||
|
subalgebra1: Optional[Set[ModelValue]] = None,
|
||||||
|
subalgebra2: Optional[Set[ModelValue]] = None,
|
||||||
|
U: Optional[Set[ModelValue]] = None,
|
||||||
|
L: Optional[Set[ModelValue]] = None):
|
||||||
|
self.has_svsp = has_svsp
|
||||||
|
self.model_name = model_name
|
||||||
|
self.subalgebra1 = subalgebra1
|
||||||
|
self.subalgebra2 = subalgebra2
|
||||||
|
self.U = U
|
||||||
|
self.L = L
|
||||||
|
|
||||||
|
def __str__(self):
|
||||||
|
if not self.has_svsp:
|
||||||
|
return f"Model {self.model_name} does not have the signed variable sharing property."
|
||||||
|
return f"""Model {self.model_name} has the signed variable sharing property.
|
||||||
|
Subalgebra 1: {set_to_str(self.subalgebra1)}
|
||||||
|
Subalgebra 2: {set_to_str(self.subalgebra2)}
|
||||||
|
U: {set_to_str(self.U)}
|
||||||
|
L: {set_to_str(self.L)}
|
||||||
|
"""
|
||||||
|
|
||||||
|
def powerset_minus_empty(s):
|
||||||
|
return chain.from_iterable(combinations(s, r) for r in range(1, len(s) + 1))
|
||||||
|
|
||||||
|
def find_k1_k2(model: Model, impfunction: ModelFunction,
|
||||||
|
negation_defined: bool) -> Generator[Tuple[Set[ModelValue], Set[ModelValue]], None, None]:
|
||||||
|
"""
|
||||||
|
Returns a list of possible subalgebra pairs (K1, K2)
|
||||||
|
for SVSP. This is less efficient than the VSP version
|
||||||
|
due to interaction with the L and U sets in SVSP.
|
||||||
|
"""
|
||||||
|
assert model.ordering is not None, "Expected ordering table in model"
|
||||||
|
|
||||||
|
top = model.ordering.top()
|
||||||
|
bottom = model.ordering.bottom()
|
||||||
|
|
||||||
|
# Compute I the set of tuples (x, y) where
|
||||||
|
# x -> y does not take a designiated value
|
||||||
|
I: List[Tuple[ModelValue, ModelValue]] = []
|
||||||
|
|
||||||
|
for (x, y) in product(model.carrier_set, model.carrier_set):
|
||||||
|
if impfunction(x, y) not in model.designated_values:
|
||||||
|
I.append((x, y))
|
||||||
|
|
||||||
|
Is = powerset_minus_empty(I)
|
||||||
|
|
||||||
|
# Find the subalgebras which falsify implication
|
||||||
|
for xys in Is:
|
||||||
|
|
||||||
|
xs = {xy[0] for xy in xys}
|
||||||
|
|
||||||
|
# Discard ({⊥} ∪ A', B) subalgebras
|
||||||
|
if bottom is not None and bottom in xs:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Discard ({⊤} ∪ A', B) subalgebras when negation is defined
|
||||||
|
if top is not None and negation_defined and top in xs:
|
||||||
|
continue
|
||||||
|
|
||||||
|
ys = {xy[1] for xy in xys}
|
||||||
|
|
||||||
|
# Discard (A, {⊤} ∪ B') subalgebras
|
||||||
|
if top is not None and top in ys:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Discard (A, {⊥} ∪ B') subalgebras when negation is defined
|
||||||
|
if bottom is not None and negation_defined and bottom in ys:
|
||||||
|
continue
|
||||||
|
|
||||||
|
order_dependent = False
|
||||||
|
for (xi, yi) in product(xs, ys):
|
||||||
|
# Discard ({a} ∪ A', {b} ∪ B') subalgebras when a <= b
|
||||||
|
if model.ordering.is_lt(xi, yi):
|
||||||
|
order_dependent = True
|
||||||
|
break
|
||||||
|
# Discard ({a} ∪ A', {b} ∪ B') subalgebras when b <= a and negation is defined
|
||||||
|
if negation_defined and model.ordering.is_lt(yi, xi):
|
||||||
|
order_dependent = True
|
||||||
|
break
|
||||||
|
|
||||||
|
if order_dependent:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Compute the left closure of the set containing xi under all the operations
|
||||||
|
carrier_set_left: Set[ModelValue] = model_closure({xi,}, model.logical_operations, bottom)
|
||||||
|
|
||||||
|
# Discard ({⊥} ∪ A', B) subalgebras
|
||||||
|
if bottom is not None and bottom in carrier_set_left:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Discard ({⊤} ∪ A', B) subalgebras when negation is defined
|
||||||
|
if top is not None and negation_defined and top in carrier_set_left:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Compute the closure of all operations
|
||||||
|
# with just the ys
|
||||||
|
carrier_set_right: Set[ModelValue] = model_closure({yi,}, model.logical_operations, top)
|
||||||
|
|
||||||
|
# Discard (A, {⊤} ∪ B') subalgebras
|
||||||
|
if top is not None and top in carrier_set_right:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Discard (A, {⊥} ∪ B') subalgebras when negation is defined
|
||||||
|
if bottom is not None and negation_defined and bottom in carrier_set_right:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Discard subalgebras that intersect
|
||||||
|
if not carrier_set_left.isdisjoint(carrier_set_right):
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Check whether for all pairs in the subalgebra,
|
||||||
|
# that implication is falsified.
|
||||||
|
falsified = True
|
||||||
|
for (x2, y2) in product(carrier_set_left, carrier_set_right):
|
||||||
|
if impfunction(x2, y2) in model.designated_values:
|
||||||
|
falsified = False
|
||||||
|
break
|
||||||
|
|
||||||
|
if falsified:
|
||||||
|
yield (carrier_set_left, carrier_set_right)
|
||||||
|
|
||||||
|
def find_candidate_u_l(
|
||||||
|
model: Model, impfn: ModelFunction, negfn: Optional[ModelFunction],
|
||||||
|
K1: Set[ModelValue], K2: Set[ModelValue]) -> Generator[Tuple[Set[ModelValue], Set[ModelValue]], None, None]:
|
||||||
|
|
||||||
|
# Compute I the set of tuples (x, y) where
|
||||||
|
# x -> y does not take a designiated value
|
||||||
|
I: List[Tuple[ModelValue, ModelValue]] = []
|
||||||
|
|
||||||
|
if negfn is None:
|
||||||
|
# NOTE: K2 ∩ U = ∅ if ∀x(x → x) ∈ T
|
||||||
|
# NOTE: K1 ∩ L = ∅ if ∀x(x → x) ∈ T
|
||||||
|
for (x, y) in product(model.carrier_set - K2, model.carrier_set - K1):
|
||||||
|
if impfn(x, y) not in model.designated_values:
|
||||||
|
I.append((x, y))
|
||||||
|
else:
|
||||||
|
# NOTE: K1, K2, L, and U are pairwise distinct
|
||||||
|
CmK1uK2 = model.carrier_set - (K1 | K2)
|
||||||
|
for (x, y) in product(CmK1uK2, CmK1uK2):
|
||||||
|
if impfn(x, y) not in model.designated_values:
|
||||||
|
I.append((x, y))
|
||||||
|
|
||||||
|
Is = powerset_minus_empty(I)
|
||||||
|
F = model.carrier_set - model.designated_values
|
||||||
|
|
||||||
|
has_double_negation_eq = False
|
||||||
|
|
||||||
|
if negfn is not None:
|
||||||
|
has_double_negation_eq = True
|
||||||
|
for x in model.carrier_set:
|
||||||
|
if negfn(negfn(x)) != x:
|
||||||
|
has_double_negation_eq = False
|
||||||
|
break
|
||||||
|
|
||||||
|
for ULs in Is:
|
||||||
|
unsat = False
|
||||||
|
U = {UL[0] for UL in ULs}
|
||||||
|
L = {UL[1] for UL in ULs}
|
||||||
|
|
||||||
|
# U and L are distinct
|
||||||
|
if U.intersection(L):
|
||||||
|
continue
|
||||||
|
|
||||||
|
if has_double_negation_eq:
|
||||||
|
# NOTE: U is the negation image of L, that is, U = {¬x | x ∈ L}, if ∀x(x = ¬¬x).
|
||||||
|
U2 = {negfn(x) for x in L}
|
||||||
|
if U != U2:
|
||||||
|
continue
|
||||||
|
yield (U, L)
|
||||||
|
|
||||||
|
LFi = F.intersection(L)
|
||||||
|
|
||||||
|
for (x, y) in product(U, L):
|
||||||
|
# Required property: ∀x ∈ U, y ∈ L(x → y ∈ L ∩ F)
|
||||||
|
if impfn(x, y) not in LFi:
|
||||||
|
unsat = True
|
||||||
|
break
|
||||||
|
# Required Property: ∀x ∈ L, y ∈ U(x → y ∈ U)
|
||||||
|
if impfn(y, x) not in U:
|
||||||
|
unsat = True
|
||||||
|
break
|
||||||
|
|
||||||
|
if unsat:
|
||||||
|
continue
|
||||||
|
|
||||||
|
if negfn is not None:
|
||||||
|
for x in L:
|
||||||
|
# Required Property: ∀x(x ∈ L ⇒ ¬x ∈ U)
|
||||||
|
if negfn(x) not in U:
|
||||||
|
unsat = True
|
||||||
|
break
|
||||||
|
|
||||||
|
if unsat:
|
||||||
|
continue
|
||||||
|
|
||||||
|
for x in U:
|
||||||
|
# Required Property: ∀x(x ∈ U ⇒ ¬x ∈ L)
|
||||||
|
if negfn(x) not in L:
|
||||||
|
unsat = True
|
||||||
|
break
|
||||||
|
|
||||||
|
if unsat:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# Passed all required properties
|
||||||
|
yield (U, L)
|
||||||
|
|
||||||
|
|
||||||
|
def has_svsp(model: Model, impfn: ModelFunction,
|
||||||
|
conjfn: Optional[ModelFunction],
|
||||||
|
disjfn: Optional[ModelFunction],
|
||||||
|
negfn: Optional[ModelFunction]) -> SVSP_Result:
|
||||||
|
"""
|
||||||
|
Checks whether a model has the signed
|
||||||
|
variable sharing property.
|
||||||
|
"""
|
||||||
|
# NOTE: No models with only one designated
|
||||||
|
# value satisfies SVSP
|
||||||
|
if len(model.designated_values) == 1:
|
||||||
|
return SVSP_Result(False, model.name)
|
||||||
|
|
||||||
|
F = model.carrier_set - model.designated_values
|
||||||
|
starops = [conjfn, disjfn]
|
||||||
|
|
||||||
|
K1K2s = find_k1_k2(model, impfn, negfn is not None)
|
||||||
|
|
||||||
|
for K1, K2 in K1K2s:
|
||||||
|
ULs = find_candidate_u_l(model, impfn, negfn, K1, K2)
|
||||||
|
for U, L in ULs:
|
||||||
|
unsat = False
|
||||||
|
K1Uu = K1 | U
|
||||||
|
K1Lu = K1 | L
|
||||||
|
K1LuFi = K1Lu.intersection(F) # (K1 ∪ L) ∩ F
|
||||||
|
K2Uu = K2 | U
|
||||||
|
K2Lu = K2 | L
|
||||||
|
K2LuFi = K2Lu.intersection(F) # (K2 ∪ L) ∩ F
|
||||||
|
|
||||||
|
# (6)
|
||||||
|
for x, y in product(K1, U):
|
||||||
|
# b) x → y ∈ K1 ∪ U
|
||||||
|
if impfn(x, y) not in K1Uu:
|
||||||
|
unsat = True
|
||||||
|
break
|
||||||
|
|
||||||
|
# c) y → x ∈ K1 ∪ L
|
||||||
|
if impfn(y, x) not in K1Lu:
|
||||||
|
unsat = True
|
||||||
|
break
|
||||||
|
|
||||||
|
# a) x ∗ y, y ∗ x, y ∗ z ∈ K1 ∪ U
|
||||||
|
for z in U:
|
||||||
|
for op in starops:
|
||||||
|
if op is not None:
|
||||||
|
if op(x, y) not in K1Uu:
|
||||||
|
unsat = True
|
||||||
|
break
|
||||||
|
if op(y, x) not in K1Uu:
|
||||||
|
unsat = True
|
||||||
|
break
|
||||||
|
if op(y, z) not in K1Uu:
|
||||||
|
unsat = True
|
||||||
|
break
|
||||||
|
if unsat:
|
||||||
|
break
|
||||||
|
|
||||||
|
if unsat:
|
||||||
|
# Verification for these set of matrices failed
|
||||||
|
break
|
||||||
|
|
||||||
|
if unsat:
|
||||||
|
# Move onto the next candidates K1, K2, U, L
|
||||||
|
continue
|
||||||
|
|
||||||
|
# (7)
|
||||||
|
for x, y in product(K1, L):
|
||||||
|
# b) x → y ∈ (K1 ∪ L) ∩ F
|
||||||
|
if impfn(x, y) not in K1LuFi:
|
||||||
|
unsat = True
|
||||||
|
break
|
||||||
|
|
||||||
|
# c) y → x ∈ K1 ∪ U
|
||||||
|
if impfn(y, x) not in K1Uu:
|
||||||
|
unsat = True
|
||||||
|
break
|
||||||
|
|
||||||
|
# a) x ∗ y, y ∗ x, y ∗ z ∈ K1 ∪ L
|
||||||
|
for z in L:
|
||||||
|
for op in starops:
|
||||||
|
if op is not None:
|
||||||
|
if op(x, y) not in K1Lu:
|
||||||
|
unsat = True
|
||||||
|
break
|
||||||
|
|
||||||
|
if op(y, x) not in K1Lu:
|
||||||
|
unsat = True
|
||||||
|
break
|
||||||
|
|
||||||
|
if op(y, z) not in K1Lu:
|
||||||
|
unsat = True
|
||||||
|
break
|
||||||
|
if unsat:
|
||||||
|
break
|
||||||
|
|
||||||
|
if unsat:
|
||||||
|
break
|
||||||
|
|
||||||
|
if unsat:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# (8)
|
||||||
|
for x, y in product(K2, U):
|
||||||
|
# b) x → y ∈ K2 ∪ U
|
||||||
|
if impfn(x, y) not in K2Uu:
|
||||||
|
unsat = True
|
||||||
|
break
|
||||||
|
|
||||||
|
# c) y → x ∈ (K2 ∪ L) ∩ F
|
||||||
|
if impfn(y, x) not in K2LuFi:
|
||||||
|
unsat = True
|
||||||
|
break
|
||||||
|
|
||||||
|
# a) x ∗ y, y ∗ x, y ∗ z ∈ K2 ∪ U
|
||||||
|
for z in U:
|
||||||
|
for op in starops:
|
||||||
|
if op is not None:
|
||||||
|
if op(x, y) not in K2Uu:
|
||||||
|
unsat = True
|
||||||
|
break
|
||||||
|
if op(y, x) not in K2Uu:
|
||||||
|
unsat = True
|
||||||
|
break
|
||||||
|
if op(y, z) not in K2Uu:
|
||||||
|
unsat = True
|
||||||
|
break
|
||||||
|
if unsat:
|
||||||
|
break
|
||||||
|
|
||||||
|
if unsat:
|
||||||
|
break
|
||||||
|
|
||||||
|
if unsat:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# (9)
|
||||||
|
for x, y in product(K2, L):
|
||||||
|
# b) x → y ∈ K2 ∪ L
|
||||||
|
if impfn(x, y) not in K2Lu:
|
||||||
|
unsat = True
|
||||||
|
break
|
||||||
|
|
||||||
|
# c) y → x ∈ K2 ∪ U
|
||||||
|
if impfn(y, x) not in K2Uu:
|
||||||
|
unsat = True
|
||||||
|
break
|
||||||
|
|
||||||
|
# a) x ∗ y, y ∗ x, y ∗ z ∈ K2 ∪ L
|
||||||
|
for z in L:
|
||||||
|
for op in starops:
|
||||||
|
if op is not None:
|
||||||
|
if op(x, y) not in K2Lu:
|
||||||
|
unsat = True
|
||||||
|
break
|
||||||
|
if op(y, x) not in K2Lu:
|
||||||
|
unsat = True
|
||||||
|
break
|
||||||
|
if op(y, z) not in K2Lu:
|
||||||
|
unsat = True
|
||||||
|
break
|
||||||
|
if unsat:
|
||||||
|
break
|
||||||
|
|
||||||
|
if unsat:
|
||||||
|
break
|
||||||
|
|
||||||
|
|
||||||
|
if not unsat:
|
||||||
|
return SVSP_Result(True, model.name, K1, K2, U, L)
|
||||||
|
|
||||||
|
return SVSP_Result(False, model.name)
|
||||||
|
|
|
||||||
Loading…
Add table
Add a link
Reference in a new issue