mirror of
https://github.com/Brandon-Rozek/matmod.git
synced 2025-06-19 10:05:52 +00:00
Merge bed3d09f4a
into 84e4d3d1e1
This commit is contained in:
commit
11f8988e25
1 changed files with 49 additions and 3 deletions
52
vsp.py
52
vsp.py
|
@ -8,7 +8,7 @@ from common import set_to_str
|
|||
from model import (
|
||||
Model, model_closure, ModelFunction, ModelValue
|
||||
)
|
||||
from logic import Implication, Operation
|
||||
from logic import Conjunction, Disjunction, Implication, Operation
|
||||
|
||||
def preseed(
|
||||
initial_set: Set[ModelValue],
|
||||
|
@ -38,6 +38,40 @@ def preseed(
|
|||
same_set = candidate_preseed[1] == 0
|
||||
return candidate_preseed[0], same_set
|
||||
|
||||
|
||||
def find_top(algebra: Set[ModelValue], mconjunction: Optional[ModelFunction], mdisjunction: Optional[ModelFunction]) -> Optional[ModelValue]:
|
||||
"""
|
||||
Find the top of the order lattice.
|
||||
T || a = T, T && a = a for all a in the carrier set
|
||||
"""
|
||||
if mconjunction is None or mdisjunction is None:
|
||||
return None
|
||||
|
||||
for x in algebra:
|
||||
for y in algebra:
|
||||
if mdisjunction(x, y) == x and mconjunction(x, y) == y:
|
||||
return x
|
||||
|
||||
print("[Warning] Failed to find the top of the lattice")
|
||||
return None
|
||||
|
||||
def find_bottom(algebra: Set[ModelValue], mconjunction: Optional[ModelFunction], mdisjunction: Optional[ModelFunction]) -> Optional[ModelValue]:
|
||||
"""
|
||||
Find the bottom of the order lattice
|
||||
F || a = a, F && a = F for all a in the carrier set
|
||||
"""
|
||||
if mconjunction is None or mdisjunction is None:
|
||||
return None
|
||||
|
||||
for x in algebra:
|
||||
for y in algebra:
|
||||
if mdisjunction(x, y) == y and mconjunction(x, y) == x:
|
||||
return x
|
||||
|
||||
print("[Warning] Failed to find the bottom of the lattice")
|
||||
return None
|
||||
|
||||
|
||||
class VSP_Result:
|
||||
def __init__(
|
||||
self, has_vsp: bool, model_name: Optional[str] = None,
|
||||
|
@ -62,6 +96,10 @@ def has_vsp(model: Model, interpretation: Dict[Operation, ModelFunction]) -> VSP
|
|||
sharing property.
|
||||
"""
|
||||
impfunction = interpretation[Implication]
|
||||
mconjunction = interpretation.get(Conjunction)
|
||||
mdisjunction = interpretation.get(Disjunction)
|
||||
top = find_top(model.carrier_set, mconjunction, mdisjunction)
|
||||
bottom = find_bottom(model.carrier_set, mconjunction, mdisjunction)
|
||||
|
||||
# NOTE: No models with only one designated
|
||||
# value satisfies VSP
|
||||
|
@ -101,11 +139,19 @@ def has_vsp(model: Model, interpretation: Dict[Operation, ModelFunction]) -> VSP
|
|||
|
||||
|
||||
# NOTE: Optimziation before model_closure
|
||||
# If the carrier set intersects, then move on to the next
|
||||
# subalgebra
|
||||
# If the two subalgebras intersect, move
|
||||
# onto the next pair
|
||||
if len(xs & ys) > 0:
|
||||
continue
|
||||
|
||||
# NOTE: Optimization
|
||||
# if either subalgebra contains top or bottom, move
|
||||
# onto the next pair
|
||||
if top is not None and (top in xs or top in ys):
|
||||
continue
|
||||
if bottom is not None and (bottom in xs or bottom in ys):
|
||||
continue
|
||||
|
||||
# Compute the closure of all operations
|
||||
# with just the xs
|
||||
carrier_set_left: Set[ModelValue] = model_closure(xs, model.logical_operations)
|
||||
|
|
Loading…
Add table
Reference in a new issue