mirror of
https://github.com/Brandon-Rozek/matmod.git
synced 2025-12-19 05:10:25 +00:00
Code cleanup
This commit is contained in:
parent
fa9e5026ca
commit
01204a9551
4 changed files with 286 additions and 353 deletions
200
vsp.py
200
vsp.py
|
|
@ -2,6 +2,7 @@
|
|||
Check to see if the model has the variable
|
||||
sharing property.
|
||||
"""
|
||||
from collections import defaultdict
|
||||
from itertools import chain, combinations, product
|
||||
from typing import List, Optional, Set, Tuple
|
||||
from common import set_to_str
|
||||
|
|
@ -9,75 +10,36 @@ from model import (
|
|||
Model, model_closure, ModelFunction, ModelValue, OrderTable
|
||||
)
|
||||
|
||||
def preseed(
|
||||
initial_set: Set[ModelValue],
|
||||
cache:List[Tuple[Set[ModelValue], Set[ModelValue]]]):
|
||||
"""
|
||||
Given a cache of previous model_closure calls,
|
||||
use this to compute an initial model closure
|
||||
set based on the initial set.
|
||||
class Cache:
|
||||
def __init__(self):
|
||||
# input size -> cached (inputs, outputs)
|
||||
self.c = defaultdict(list)
|
||||
|
||||
Basic Idea:
|
||||
Let {1, 2, 3} -> X be in the cache.
|
||||
If {1,2,3} is a subset of initial set,
|
||||
then X is the subset of the output of model_closure.
|
||||
def add(self, i: Set[ModelValue], o: Set[ModelValue]):
|
||||
self.c[len(i)].append((i, o))
|
||||
|
||||
This is used to speed up subsequent calls to model_closure
|
||||
"""
|
||||
candidate_preseed: Tuple[Set[ModelValue], int] = (None, None)
|
||||
def get_closest(self, initial_set: Set[ModelValue]) -> Optional[Tuple[Set[ModelValue], bool]]:
|
||||
"""
|
||||
Iterate through our cache starting with the cached
|
||||
inputs closest in size to the initial_set and
|
||||
find the one that's a subset of initial_set.
|
||||
|
||||
for i, o in cache:
|
||||
if i < initial_set:
|
||||
cost = len(initial_set - i)
|
||||
# If i is a subset with less missing elements than
|
||||
# the previous candidate, then it's the new candidate.
|
||||
if candidate_preseed[1] is None or cost < candidate_preseed[1]:
|
||||
candidate_preseed = o, cost
|
||||
Returns cached_output, and whether the initial_set is the same
|
||||
as the cached_input.
|
||||
"""
|
||||
initial_set_size = len(initial_set)
|
||||
sizes = range(initial_set_size, 0, -1)
|
||||
|
||||
same_set = candidate_preseed[1] == 0
|
||||
return candidate_preseed[0], same_set
|
||||
for size in sizes:
|
||||
if size not in self.c:
|
||||
continue
|
||||
|
||||
for cached_input, cached_output in self.c[size]:
|
||||
if cached_input <= initial_set:
|
||||
return cached_output, size == initial_set_size
|
||||
|
||||
def find_top(algebra: Set[ModelValue], mconjunction: Optional[ModelFunction], mdisjunction: Optional[ModelFunction]) -> Optional[ModelValue]:
|
||||
"""
|
||||
Find the top of the order lattice.
|
||||
T || a = T, T && a = a for all a in the carrier set
|
||||
"""
|
||||
if mconjunction is None or mdisjunction is None:
|
||||
return None
|
||||
|
||||
for x in algebra:
|
||||
is_top = True
|
||||
for y in algebra:
|
||||
if mdisjunction(x, y) != x or mconjunction(x, y) != y:
|
||||
is_top = False
|
||||
break
|
||||
if is_top:
|
||||
return x
|
||||
|
||||
print("[Warning] Failed to find the top of the lattice")
|
||||
return None
|
||||
|
||||
def find_bottom(algebra: Set[ModelValue], mconjunction: Optional[ModelFunction], mdisjunction: Optional[ModelFunction]) -> Optional[ModelValue]:
|
||||
"""
|
||||
Find the bottom of the order lattice
|
||||
F || a = a, F && a = F for all a in the carrier set
|
||||
"""
|
||||
if mconjunction is None or mdisjunction is None:
|
||||
return None
|
||||
|
||||
for x in algebra:
|
||||
is_bottom = True
|
||||
for y in algebra:
|
||||
if mdisjunction(x, y) != y or mconjunction(x, y) != x:
|
||||
is_bottom = False
|
||||
break
|
||||
if is_bottom:
|
||||
return x
|
||||
|
||||
print("[Warning] Failed to find the bottom of the lattice")
|
||||
return None
|
||||
|
||||
def order_dependent(subalgebra1: Set[ModelValue], subalegbra2: Set[ModelValue], ordering: OrderTable):
|
||||
"""
|
||||
Returns true if there exists a value in subalgebra1 that's less than a value in subalgebra2
|
||||
|
|
@ -106,17 +68,49 @@ Subalgebra 1: {set_to_str(self.subalgebra1)}
|
|||
Subalgebra 2: {set_to_str(self.subalgebra2)}
|
||||
"""
|
||||
|
||||
def quick_vsp_unsat_incomplete(xs, ys, model, top, bottom, negation_defined) -> bool:
|
||||
"""
|
||||
Return True if VSP cannot be satisfied
|
||||
through some incomplete checks.
|
||||
"""
|
||||
# If the left subalgebra contains bottom
|
||||
# or the right subalgebra contains top
|
||||
# skip this pair
|
||||
if top is not None and top in ys:
|
||||
return True
|
||||
if bottom is not None and bottom in xs:
|
||||
return True
|
||||
|
||||
# If a subalgebra doesn't have at least one
|
||||
# designated value, move onto the next pair.
|
||||
# Depends on no intersection between xs and ys
|
||||
if xs.isdisjoint(model.designated_values):
|
||||
return True
|
||||
|
||||
if ys.isdisjoint(model.designated_values):
|
||||
return True
|
||||
|
||||
# If the two subalgebras intersect, move
|
||||
# onto the next pair.
|
||||
if not xs.isdisjoint(ys):
|
||||
return True
|
||||
|
||||
# If the subalgebras are order-dependent, skip this pair
|
||||
if order_dependent(xs, ys, model.ordering):
|
||||
return True
|
||||
if negation_defined and order_dependent(ys, xs, model.ordering):
|
||||
return True
|
||||
|
||||
# We can't immediately rule out that these
|
||||
# subalgebras don't exhibit VSP
|
||||
return False
|
||||
|
||||
def has_vsp(model: Model, impfunction: ModelFunction,
|
||||
mconjunction: Optional[ModelFunction] = None,
|
||||
mdisjunction: Optional[ModelFunction] = None,
|
||||
mnegation: Optional[ModelFunction] = None) -> VSP_Result:
|
||||
negation_defined: bool) -> VSP_Result:
|
||||
"""
|
||||
Checks whether a model has the variable
|
||||
sharing property.
|
||||
"""
|
||||
top = find_top(model.carrier_set, mconjunction, mdisjunction)
|
||||
bottom = find_bottom(model.carrier_set, mconjunction, mdisjunction)
|
||||
|
||||
# NOTE: No models with only one designated
|
||||
# value satisfies VSP
|
||||
if len(model.designated_values) == 1:
|
||||
|
|
@ -124,68 +118,44 @@ def has_vsp(model: Model, impfunction: ModelFunction,
|
|||
|
||||
assert model.ordering is not None, "Expected ordering table in model"
|
||||
|
||||
top = model.ordering.top()
|
||||
bottom = model.ordering.bottom()
|
||||
|
||||
# Compute I the set of tuples (x, y) where
|
||||
# x -> y does not take a designiated value
|
||||
I: Set[Tuple[ModelValue, ModelValue]] = set()
|
||||
I: List[Tuple[ModelValue, ModelValue]] = []
|
||||
|
||||
for (x, y) in product(model.carrier_set, model.carrier_set):
|
||||
if impfunction(x, y) not in model.designated_values:
|
||||
I.add((x, y))
|
||||
I.append((x, y))
|
||||
|
||||
# Construct the powerset of I without the empty set
|
||||
s = list(I)
|
||||
I_power = chain.from_iterable(combinations(s, r) for r in range(1, len(s) + 1))
|
||||
I_power = chain.from_iterable(combinations(I, r) for r in range(1, len(I) + 1))
|
||||
# ((x1, y1)), ((x1, y1), (x2, y2)), ...
|
||||
|
||||
# Closure cache
|
||||
closure_cache: List[Tuple[Set[ModelValue], Set[ModelValue]]] = []
|
||||
closure_cache = Cache()
|
||||
|
||||
# Find the subalgebras which falsify implication
|
||||
for xys in I_power:
|
||||
|
||||
xs = {xy[0] for xy in xys}
|
||||
xs = { xy[0] for xy in xys }
|
||||
ys = { xy[1] for xy in xys }
|
||||
|
||||
if quick_vsp_unsat_incomplete(xs, ys, model, top, bottom, negation_defined):
|
||||
continue
|
||||
|
||||
orig_xs = xs
|
||||
cached_xs = preseed(xs, closure_cache)
|
||||
if cached_xs[0] is not None:
|
||||
cached_xs = closure_cache.get_closest(xs)
|
||||
if cached_xs is not None:
|
||||
xs |= cached_xs[0]
|
||||
|
||||
ys = {xy[1] for xy in xys}
|
||||
orig_ys = ys
|
||||
cached_ys = preseed(ys, closure_cache)
|
||||
if cached_ys[0] is not None:
|
||||
cached_ys = closure_cache.get_closest(ys)
|
||||
if cached_ys is not None:
|
||||
ys |= cached_ys[0]
|
||||
|
||||
|
||||
# NOTE: Optimziation before model_closure
|
||||
# If the two subalgebras intersect, move
|
||||
# onto the next pair.
|
||||
if len(xs & ys) > 0:
|
||||
continue
|
||||
|
||||
# NOTE: Optimization
|
||||
# If a subalgebra doesn't have at least one
|
||||
# designated value, move onto the next pair.
|
||||
# Depends on no intersection between xs and ys
|
||||
if len(xs & model.designated_values) == 0:
|
||||
continue
|
||||
|
||||
if len(ys & model.designated_values) == 0:
|
||||
continue
|
||||
|
||||
# NOTE: Optimization
|
||||
# If the left subalgebra contains bottom
|
||||
# or the right subalgebra contains top
|
||||
# skip this pair
|
||||
if top is not None and top in ys:
|
||||
continue
|
||||
if bottom is not None and bottom in xs:
|
||||
continue
|
||||
|
||||
# NOTE: Optimization
|
||||
# If the subalgebras are order-dependent, skip this pair
|
||||
if order_dependent(xs, ys, model.ordering):
|
||||
continue
|
||||
if mnegation is not None and order_dependent(ys, xs, model.ordering):
|
||||
xs_ys_updated = cached_xs is not None or cached_ys is not None
|
||||
if xs_ys_updated and quick_vsp_unsat_incomplete(xs, ys, model, top, bottom, negation_defined):
|
||||
continue
|
||||
|
||||
# Compute the closure of all operations
|
||||
|
|
@ -193,8 +163,8 @@ def has_vsp(model: Model, impfunction: ModelFunction,
|
|||
carrier_set_left: Set[ModelValue] = model_closure(xs, model.logical_operations, bottom)
|
||||
|
||||
# Save to cache
|
||||
if cached_xs[0] is not None and not cached_ys[1]:
|
||||
closure_cache.append((orig_xs, carrier_set_left))
|
||||
if cached_xs is None or (cached_xs is not None and not cached_xs[1]):
|
||||
closure_cache.add(orig_xs, carrier_set_left)
|
||||
|
||||
if bottom is not None and bottom in carrier_set_left:
|
||||
continue
|
||||
|
|
@ -204,15 +174,15 @@ def has_vsp(model: Model, impfunction: ModelFunction,
|
|||
carrier_set_right: Set[ModelValue] = model_closure(ys, model.logical_operations, top)
|
||||
|
||||
# Save to cache
|
||||
if cached_ys[0] is not None and not cached_ys[1]:
|
||||
closure_cache.append((orig_ys, carrier_set_right))
|
||||
if cached_ys is None or (cached_ys is not None and not cached_ys[1]):
|
||||
closure_cache.add(orig_ys, carrier_set_right)
|
||||
|
||||
if top is not None and top in carrier_set_right:
|
||||
continue
|
||||
|
||||
# If the carrier set intersects, then move on to the next
|
||||
# subalgebra
|
||||
if len(carrier_set_left & carrier_set_right) > 0:
|
||||
if not carrier_set_left.isdisjoint(carrier_set_right):
|
||||
continue
|
||||
|
||||
# See if for all pairs in the subalgebras, that
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue