rltorch/examples/acrobot_es.py
2020-04-14 15:24:48 -04:00

115 lines
3.8 KiB
Python

import gym
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.distributions import Categorical
import rltorch
import rltorch.network as rn
import rltorch.memory as M
import rltorch.env as E
from rltorch.action_selector import StochasticSelector
from tensorboardX import SummaryWriter
from rltorch.log import Logger
#
## Networks
#
class Policy(nn.Module):
def __init__(self, state_size, action_size):
super(Policy, self).__init__()
self.state_size = state_size
self.action_size = action_size
self.fc1 = nn.Linear(state_size, 125)
self.fc_norm = nn.LayerNorm(125)
self.fc2 = nn.Linear(125, 125)
self.fc2_norm = nn.LayerNorm(125)
self.action_prob = nn.Linear(125, action_size)
def forward(self, x):
x = F.relu(self.fc_norm(self.fc1(x)))
x = F.relu(self.fc2_norm(self.fc2(x)))
x = F.softmax(self.action_prob(x), dim = 1)
return x
#
## Configuration
#
config = {}
config['seed'] = 901
config['environment_name'] = 'Acrobot-v1'
config['total_training_episodes'] = 50
config['total_evaluation_episodes'] = 5
config['learning_rate'] = 1e-1
config['discount_rate'] = 0.99
# How many episodes between printing out the episode stats
config['print_stat_n_eps'] = 1
config['disable_cuda'] = False
#
## Training Loop
#
def train(runner, net, config, logwriter=None):
finished = False
while not finished:
runner.run()
net.calc_gradients()
net.step()
if logwriter is not None:
net.log_named_parameters()
logwriter.write(Logger)
finished = runner.episode_num > config['total_training_episodes']
#
## Loss function
#
def fitness(model):
env = gym.make("Acrobot-v1")
state = torch.from_numpy(env.reset()).float().unsqueeze(0)
total_reward = 0
done = False
while not done:
action_probabilities = model(state)
distribution = Categorical(action_probabilities)
action = distribution.sample().item()
next_state, reward, done, _ = env.step(action)
total_reward += reward
state = torch.from_numpy(next_state).float().unsqueeze(0)
return -total_reward
if __name__ == "__main__":
# Hide internal gym warnings
gym.logger.set_level(40)
# Setting up the environment
rltorch.set_seed(config['seed'])
print("Setting up environment...", end=" ")
env = E.TorchWrap(gym.make(config['environment_name']))
env.seed(config['seed'])
print("Done.")
state_size = env.observation_space.shape[0]
action_size = env.action_space.n
# Logging
logwriter = rltorch.log.LogWriter(SummaryWriter())
# Setting up the networks
device = torch.device("cuda:0" if torch.cuda.is_available() and not config['disable_cuda'] else "cpu")
net = rn.ESNetwork(Policy(state_size, action_size),
torch.optim.Adam, 100, fitness, config, device=device, name="ES")
# Actor takes a net and uses it to produce actions from given states
actor = StochasticSelector(net, action_size, device=device)
# Runner performs an episode of the environment
runner = rltorch.env.EnvironmentEpisodeSync(env, actor, config, name="Training", logwriter=logwriter)
print("Training...")
train(runner, net, config, logwriter=logwriter)
# For profiling...
# import cProfile
# cProfile.run('train(runner, agent, config, logwriter = logwriter )')
# python -m torch.utils.bottleneck /path/to/source/script.py [args] is also a good solution...
print("Training Finished.")
print("Evaluating...")
rltorch.env.simulateEnvEps(env, actor, config, total_episodes=config['total_evaluation_episodes'], name="Evaluation")
print("Evaulations Done.")
logwriter.close() # We don't need to write anything out to disk anymore