import gym import torch import torch.nn as nn import torch.nn.functional as F from torch.distributions import Categorical import rltorch import rltorch.network as rn import rltorch.memory as M import rltorch.env as E from rltorch.action_selector import StochasticSelector from tensorboardX import SummaryWriter from rltorch.log import Logger # ## Networks # class Policy(nn.Module): def __init__(self, state_size, action_size): super(Policy, self).__init__() self.state_size = state_size self.action_size = action_size self.fc1 = nn.Linear(state_size, 125) self.fc_norm = nn.LayerNorm(125) self.fc2 = nn.Linear(125, 125) self.fc2_norm = nn.LayerNorm(125) self.action_prob = nn.Linear(125, action_size) def forward(self, x): x = F.relu(self.fc_norm(self.fc1(x))) x = F.relu(self.fc2_norm(self.fc2(x))) x = F.softmax(self.action_prob(x), dim = 1) return x # ## Configuration # config = {} config['seed'] = 901 config['environment_name'] = 'Acrobot-v1' config['total_training_episodes'] = 50 config['total_evaluation_episodes'] = 5 config['learning_rate'] = 1e-1 config['discount_rate'] = 0.99 # How many episodes between printing out the episode stats config['print_stat_n_eps'] = 1 config['disable_cuda'] = False # ## Training Loop # def train(runner, net, config, logwriter=None): finished = False while not finished: runner.run() net.calc_gradients() net.step() if logwriter is not None: net.log_named_parameters() logwriter.write(Logger) finished = runner.episode_num > config['total_training_episodes'] # ## Loss function # def fitness(model): env = gym.make("Acrobot-v1") state = torch.from_numpy(env.reset()).float().unsqueeze(0) total_reward = 0 done = False while not done: action_probabilities = model(state) distribution = Categorical(action_probabilities) action = distribution.sample().item() next_state, reward, done, _ = env.step(action) total_reward += reward state = torch.from_numpy(next_state).float().unsqueeze(0) return -total_reward if __name__ == "__main__": # Hide internal gym warnings gym.logger.set_level(40) # Setting up the environment rltorch.set_seed(config['seed']) print("Setting up environment...", end=" ") env = E.TorchWrap(gym.make(config['environment_name'])) env.seed(config['seed']) print("Done.") state_size = env.observation_space.shape[0] action_size = env.action_space.n # Logging logwriter = rltorch.log.LogWriter(SummaryWriter()) # Setting up the networks device = torch.device("cuda:0" if torch.cuda.is_available() and not config['disable_cuda'] else "cpu") net = rn.ESNetwork(Policy(state_size, action_size), torch.optim.Adam, 100, fitness, config, device=device, name="ES") # Actor takes a net and uses it to produce actions from given states actor = StochasticSelector(net, action_size, device=device) # Runner performs an episode of the environment runner = rltorch.env.EnvironmentEpisodeSync(env, actor, config, name="Training", logwriter=logwriter) print("Training...") train(runner, net, config, logwriter=logwriter) # For profiling... # import cProfile # cProfile.run('train(runner, agent, config, logwriter = logwriter )') # python -m torch.utils.bottleneck /path/to/source/script.py [args] is also a good solution... print("Training Finished.") print("Evaluating...") rltorch.env.simulateEnvEps(env, actor, config, total_episodes=config['total_evaluation_episodes'], name="Evaluation") print("Evaulations Done.") logwriter.close() # We don't need to write anything out to disk anymore