Corrected A2C and PPO to train at the end of an episode

This commit is contained in:
Brandon Rozek 2019-03-01 21:04:13 -05:00
parent 1958fc7c7e
commit e42f5bba1b
5 changed files with 48 additions and 28 deletions

View file

@ -94,15 +94,12 @@ config['disable_cuda'] = False
def train(runner, agent, config, logger = None, logwriter = None):
finished = False
last_episode_num = 1
while not finished:
runner.run(config['replay_skip'] + 1)
runner.run()
agent.learn()
if logwriter is not None:
if last_episode_num < runner.episode_num:
last_episode_num = runner.episode_num
agent.value_net.log_named_parameters()
agent.policy_net.log_named_parameters()
agent.value_net.log_named_parameters()
agent.policy_net.log_named_parameters()
logwriter.write(logger)
finished = runner.episode_num > config['total_training_episodes']
@ -141,8 +138,8 @@ if __name__ == "__main__":
# agent = rltorch.agents.REINFORCEAgent(net, memory, config, target_net = target_net, logger = logger)
agent = rltorch.agents.A2CSingleAgent(policy_net, value_net, memory, config, logger = logger)
# Runner performs a certain number of steps in the environment
runner = rltorch.env.EnvironmentRunSync(env, actor, config, name = "Training", memory = memory, logwriter = logwriter)
# Runner performs one episode in the environment
runner = rltorch.env.EnvironmentEpisodeSync(env, actor, config, name = "Training", memory = memory, logwriter = logwriter)
print("Training...")
train(runner, agent, config, logger = logger, logwriter = logwriter)

View file

@ -94,21 +94,16 @@ config['disable_cuda'] = False
def train(runner, agent, config, logger = None, logwriter = None):
finished = False
last_episode_num = 1
while not finished:
runner.run(config['replay_skip'] + 1)
runner.run()
agent.learn()
if logwriter is not None:
if last_episode_num < runner.episode_num:
last_episode_num = runner.episode_num
agent.value_net.log_named_parameters()
agent.policy_net.log_named_parameters()
agent.value_net.log_named_parameters()
agent.policy_net.log_named_parameters()
logwriter.write(logger)
finished = runner.episode_num > config['total_training_episodes']
if __name__ == "__main__":
torch.multiprocessing.set_sharing_strategy('file_system') # To not hit file descriptor memory limit
# Setting up the environment
rltorch.set_seed(config['seed'])
print("Setting up environment...", end = " ")
@ -142,7 +137,7 @@ if __name__ == "__main__":
agent = rltorch.agents.PPOAgent(policy_net, value_net, memory, config, logger = logger)
# Runner performs a certain number of steps in the environment
runner = rltorch.env.EnvironmentRunSync(env, actor, config, name = "Training", memory = memory, logwriter = logwriter)
runner = rltorch.env.EnvironmentEpisodeSync(env, actor, config, name = "Training", memory = memory, logwriter = logwriter)
print("Training...")
train(runner, agent, config, logger = logger, logwriter = logwriter)

View file

@ -27,9 +27,6 @@ class A2CSingleAgent:
def learn(self):
if len(self.memory) < self.config['batch_size']:
return
episode_batch = self.memory.recall()
state_batch, action_batch, reward_batch, next_state_batch, done_batch, log_prob_batch = zip(*episode_batch)
@ -40,7 +37,7 @@ class A2CSingleAgent:
log_prob_batch = torch.cat(log_prob_batch).to(self.value_net.device)
## Value Loss
value_loss = F.mse_loss(self._discount_rewards(reward_batch), self.value_net(state_batch[0]))
value_loss = F.mse_loss(self._discount_rewards(reward_batch).sum(), self.value_net(state_batch[0]))
self.value_net.zero_grad()
value_loss.backward()
self.value_net.step()

View file

@ -1,5 +1,3 @@
# Deprecated since the idea of the idea shouldn't work without having some sort of "mental model" of the environment
from copy import deepcopy
import numpy as np
import torch
@ -30,9 +28,6 @@ class PPOAgent:
def learn(self):
if len(self.memory) < self.config['batch_size']:
return
episode_batch = self.memory.recall()
state_batch, action_batch, reward_batch, next_state_batch, done_batch, log_prob_batch = zip(*episode_batch)
@ -44,7 +39,7 @@ class PPOAgent:
log_prob_batch = torch.cat(log_prob_batch).to(self.value_net.device)
## Value Loss
value_loss = F.mse_loss(self._discount_rewards(reward_batch), self.value_net(state_batch[0]))
value_loss = F.mse_loss(self._discount_rewards(reward_batch).sum(), self.value_net(state_batch[0]))
self.value_net.zero_grad()
value_loss.backward()
self.value_net.step()

View file

@ -63,3 +63,39 @@ class EnvironmentRunSync():
self.logwriter.write(logger)
self.last_state = state
class EnvironmentEpisodeSync():
def __init__(self, env, actor, config, memory = None, logwriter = None, name = ""):
self.env = env
self.name = name
self.actor = actor
self.config = deepcopy(config)
self.logwriter = logwriter
self.memory = memory
self.episode_num = 1
def run(self):
state = self.env.reset()
done = False
episodeReward = 0
logger = rltorch.log.Logger() if self.logwriter is not None else None
while not done:
action = self.actor.act(state)
next_state, reward, done, _ = self.env.step(action)
episodeReward += reward
if self.memory is not None:
self.memory.append(state, action, reward, next_state, done)
state = next_state
if self.episode_num % self.config['print_stat_n_eps'] == 0:
print("episode: {}/{}, score: {}"
.format(self.episode_num, self.config['total_training_episodes'], episodeReward))
if self.logwriter is not None:
logger.append(self.name + '/EpisodeReward', episodeReward)
self.logwriter.write(logger)
self.episode_num += 1