rltorch/rltorch/agents/PPOAgent.py

78 lines
2.9 KiB
Python

from copy import deepcopy
import numpy as np
import torch
import torch.nn.functional as F
from torch.distributions import Categorical
import rltorch
import rltorch.memory as M
import collections
import random
class PPOAgent:
def __init__(self, policy_net, value_net, memory, config, logger = None):
self.policy_net = policy_net
self.old_policy_net = rltorch.network.TargetNetwork(policy_net)
self.value_net = value_net
self.memory = memory
self.config = deepcopy(config)
self.logger = logger
def _discount_rewards(self, rewards):
discounted_rewards = torch.zeros_like(rewards)
running_add = 0
for t in reversed(range(len(rewards))):
running_add = running_add * self.config['discount_rate'] + rewards[t]
discounted_rewards[t] = running_add
return discounted_rewards
def learn(self):
episode_batch = self.memory.recall()
state_batch, action_batch, reward_batch, next_state_batch, done_batch, log_prob_batch = zip(*episode_batch)
state_batch = torch.cat(state_batch).to(self.value_net.device)
action_batch = torch.tensor(action_batch).to(self.value_net.device)
reward_batch = torch.tensor(reward_batch).to(self.value_net.device)
not_done_batch = ~torch.tensor(done_batch).to(self.value_net.device)
next_state_batch = torch.cat(next_state_batch).to(self.value_net.device)
log_prob_batch = torch.cat(log_prob_batch).to(self.value_net.device)
## Value Loss
value_loss = F.mse_loss(self._discount_rewards(reward_batch).sum(), self.value_net(state_batch[0]))
self.value_net.zero_grad()
value_loss.backward()
self.value_net.step()
## Policy Loss
with torch.no_grad():
state_values = self.value_net(state_batch)
next_state_values = torch.zeros_like(state_values)
next_state_values[not_done_batch] = self.value_net(next_state_batch[not_done_batch])
advantages = (reward_batch.unsqueeze(1) + self.config['discount_rate'] * next_state_values) - state_values
advantages = advantages.squeeze(1)
action_probabilities = self.old_policy_net(state_batch).detach()
distributions = list(map(Categorical, action_probabilities))
old_log_probs = torch.stack(list(map(lambda distribution, action: distribution.log_prob(action), distributions, action_batch)))
policy_ratio = torch.exp(log_prob_batch - old_log_probs) # Equivalent to (log_prob / old_log_prob)
policy_loss1 = policy_ratio * advantages
policy_loss2 = policy_ratio.clamp(min = 0.8, max = 1.2) * advantages # From original paper
policy_loss = -torch.min(policy_loss1, policy_loss2).sum()
if self.logger is not None:
self.logger.append("Loss/Policy", policy_loss.item())
self.logger.append("Loss/Value", value_loss.item())
self.old_policy_net.sync()
self.policy_net.zero_grad()
policy_loss.backward()
self.policy_net.step()
# Memory is irrelevant for future training
self.memory.clear()