Corrected A2C and PPO to train at the end of an episode
This commit is contained in:
parent
1958fc7c7e
commit
e42f5bba1b
5 changed files with 48 additions and 28 deletions
|
@ -27,9 +27,6 @@ class A2CSingleAgent:
|
|||
|
||||
|
||||
def learn(self):
|
||||
if len(self.memory) < self.config['batch_size']:
|
||||
return
|
||||
|
||||
episode_batch = self.memory.recall()
|
||||
state_batch, action_batch, reward_batch, next_state_batch, done_batch, log_prob_batch = zip(*episode_batch)
|
||||
|
||||
|
@ -40,7 +37,7 @@ class A2CSingleAgent:
|
|||
log_prob_batch = torch.cat(log_prob_batch).to(self.value_net.device)
|
||||
|
||||
## Value Loss
|
||||
value_loss = F.mse_loss(self._discount_rewards(reward_batch), self.value_net(state_batch[0]))
|
||||
value_loss = F.mse_loss(self._discount_rewards(reward_batch).sum(), self.value_net(state_batch[0]))
|
||||
self.value_net.zero_grad()
|
||||
value_loss.backward()
|
||||
self.value_net.step()
|
||||
|
|
|
@ -1,5 +1,3 @@
|
|||
# Deprecated since the idea of the idea shouldn't work without having some sort of "mental model" of the environment
|
||||
|
||||
from copy import deepcopy
|
||||
import numpy as np
|
||||
import torch
|
||||
|
@ -30,9 +28,6 @@ class PPOAgent:
|
|||
|
||||
|
||||
def learn(self):
|
||||
if len(self.memory) < self.config['batch_size']:
|
||||
return
|
||||
|
||||
episode_batch = self.memory.recall()
|
||||
state_batch, action_batch, reward_batch, next_state_batch, done_batch, log_prob_batch = zip(*episode_batch)
|
||||
|
||||
|
@ -44,7 +39,7 @@ class PPOAgent:
|
|||
log_prob_batch = torch.cat(log_prob_batch).to(self.value_net.device)
|
||||
|
||||
## Value Loss
|
||||
value_loss = F.mse_loss(self._discount_rewards(reward_batch), self.value_net(state_batch[0]))
|
||||
value_loss = F.mse_loss(self._discount_rewards(reward_batch).sum(), self.value_net(state_batch[0]))
|
||||
self.value_net.zero_grad()
|
||||
value_loss.backward()
|
||||
self.value_net.step()
|
||||
|
|
38
rltorch/env/simulate.py
vendored
38
rltorch/env/simulate.py
vendored
|
@ -62,4 +62,40 @@ class EnvironmentRunSync():
|
|||
if self.logwriter is not None:
|
||||
self.logwriter.write(logger)
|
||||
|
||||
self.last_state = state
|
||||
self.last_state = state
|
||||
|
||||
|
||||
class EnvironmentEpisodeSync():
|
||||
def __init__(self, env, actor, config, memory = None, logwriter = None, name = ""):
|
||||
self.env = env
|
||||
self.name = name
|
||||
self.actor = actor
|
||||
self.config = deepcopy(config)
|
||||
self.logwriter = logwriter
|
||||
self.memory = memory
|
||||
self.episode_num = 1
|
||||
|
||||
def run(self):
|
||||
state = self.env.reset()
|
||||
done = False
|
||||
episodeReward = 0
|
||||
logger = rltorch.log.Logger() if self.logwriter is not None else None
|
||||
while not done:
|
||||
action = self.actor.act(state)
|
||||
next_state, reward, done, _ = self.env.step(action)
|
||||
|
||||
episodeReward += reward
|
||||
if self.memory is not None:
|
||||
self.memory.append(state, action, reward, next_state, done)
|
||||
|
||||
state = next_state
|
||||
|
||||
if self.episode_num % self.config['print_stat_n_eps'] == 0:
|
||||
print("episode: {}/{}, score: {}"
|
||||
.format(self.episode_num, self.config['total_training_episodes'], episodeReward))
|
||||
|
||||
if self.logwriter is not None:
|
||||
logger.append(self.name + '/EpisodeReward', episodeReward)
|
||||
self.logwriter.write(logger)
|
||||
|
||||
self.episode_num += 1
|
Loading…
Add table
Add a link
Reference in a new issue