Implemented REINFORCE into the library
This commit is contained in:
parent
14ba64d525
commit
21b820b401
7 changed files with 250 additions and 2 deletions
126
examples/acrobot_reinforce.py
Normal file
126
examples/acrobot_reinforce.py
Normal file
|
@ -0,0 +1,126 @@
|
||||||
|
import gym
|
||||||
|
import numpy as np
|
||||||
|
import torch
|
||||||
|
import torch.nn as nn
|
||||||
|
import torch.nn.functional as F
|
||||||
|
import rltorch
|
||||||
|
import rltorch.network as rn
|
||||||
|
import rltorch.memory as M
|
||||||
|
import rltorch.env as E
|
||||||
|
from rltorch.action_selector import StochasticSelector
|
||||||
|
from tensorboardX import SummaryWriter
|
||||||
|
import torch.multiprocessing as mp
|
||||||
|
import signal
|
||||||
|
from copy import deepcopy
|
||||||
|
|
||||||
|
class Value(nn.Module):
|
||||||
|
def __init__(self, state_size, action_size):
|
||||||
|
super(Value, self).__init__()
|
||||||
|
self.state_size = state_size
|
||||||
|
self.action_size = action_size
|
||||||
|
|
||||||
|
self.fc1 = rn.NoisyLinear(state_size, 64)
|
||||||
|
self.fc_norm = nn.LayerNorm(64)
|
||||||
|
|
||||||
|
self.value_fc = rn.NoisyLinear(64, 64)
|
||||||
|
self.value_fc_norm = nn.LayerNorm(64)
|
||||||
|
self.value = rn.NoisyLinear(64, 1)
|
||||||
|
|
||||||
|
self.advantage_fc = rn.NoisyLinear(64, 64)
|
||||||
|
self.advantage_fc_norm = nn.LayerNorm(64)
|
||||||
|
self.advantage = rn.NoisyLinear(64, action_size)
|
||||||
|
|
||||||
|
def forward(self, x):
|
||||||
|
x = F.relu(self.fc_norm(self.fc1(x)))
|
||||||
|
|
||||||
|
state_value = F.relu(self.value_fc_norm(self.value_fc(x)))
|
||||||
|
state_value = self.value(state_value)
|
||||||
|
|
||||||
|
advantage = F.relu(self.advantage_fc_norm(self.advantage_fc(x)))
|
||||||
|
advantage = self.advantage(advantage)
|
||||||
|
|
||||||
|
x = F.softmax(state_value + advantage - advantage.mean(), dim = 1)
|
||||||
|
|
||||||
|
return x
|
||||||
|
|
||||||
|
|
||||||
|
config = {}
|
||||||
|
config['seed'] = 901
|
||||||
|
config['environment_name'] = 'Acrobot-v1'
|
||||||
|
config['memory_size'] = 2000
|
||||||
|
config['total_training_episodes'] = 100
|
||||||
|
config['total_evaluation_episodes'] = 10
|
||||||
|
config['batch_size'] = 32
|
||||||
|
config['learning_rate'] = 1e-3
|
||||||
|
config['target_sync_tau'] = 1e-1
|
||||||
|
config['discount_rate'] = 0.99
|
||||||
|
config['replay_skip'] = 0
|
||||||
|
# How many episodes between printing out the episode stats
|
||||||
|
config['print_stat_n_eps'] = 1
|
||||||
|
config['disable_cuda'] = False
|
||||||
|
|
||||||
|
def train(env, agent, actor, memory, config, logger = None, logwriter = None):
|
||||||
|
finished = False
|
||||||
|
episode_num = 1
|
||||||
|
while not finished:
|
||||||
|
rltorch.env.simulateEnvEps(env, actor, config, memory = memory, logger = logger, name = "Training")
|
||||||
|
episode_num += 1
|
||||||
|
agent.learn()
|
||||||
|
# When the episode number changes, log network paramters
|
||||||
|
if logwriter is not None:
|
||||||
|
agent.net.log_named_parameters()
|
||||||
|
logwriter.write(logger)
|
||||||
|
finished = episode_num > config['total_training_episodes']
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
torch.multiprocessing.set_sharing_strategy('file_system') # To not hit file descriptor memory limit
|
||||||
|
|
||||||
|
# Setting up the environment
|
||||||
|
rltorch.set_seed(config['seed'])
|
||||||
|
print("Setting up environment...", end = " ")
|
||||||
|
env = E.TorchWrap(gym.make(config['environment_name']))
|
||||||
|
env.seed(config['seed'])
|
||||||
|
print("Done.")
|
||||||
|
|
||||||
|
state_size = env.observation_space.shape[0]
|
||||||
|
action_size = env.action_space.n
|
||||||
|
|
||||||
|
# Logging
|
||||||
|
logger = rltorch.log.Logger()
|
||||||
|
logwriter = rltorch.log.LogWriter(SummaryWriter())
|
||||||
|
|
||||||
|
# Setting up the networks
|
||||||
|
device = torch.device("cuda:0" if torch.cuda.is_available() and not config['disable_cuda'] else "cpu")
|
||||||
|
net = rn.Network(Value(state_size, action_size),
|
||||||
|
torch.optim.Adam, config, device = device, name = "DQN")
|
||||||
|
target_net = rn.TargetNetwork(net, device = device)
|
||||||
|
net.model.share_memory()
|
||||||
|
target_net.model.share_memory()
|
||||||
|
|
||||||
|
# Memory stores experiences for later training
|
||||||
|
memory = M.EpisodeMemory()
|
||||||
|
|
||||||
|
# Actor takes a net and uses it to produce actions from given states
|
||||||
|
actor = StochasticSelector(net, action_size, memory, device = device)
|
||||||
|
|
||||||
|
# Agent is what performs the training
|
||||||
|
agent = rltorch.agents.REINFORCEAgent(net, memory, config, target_net = target_net, logger = logger)
|
||||||
|
|
||||||
|
print("Training...")
|
||||||
|
|
||||||
|
train(env, agent, actor, memory, config, logger = logger, logwriter = logwriter)
|
||||||
|
|
||||||
|
# For profiling...
|
||||||
|
# import cProfile
|
||||||
|
# cProfile.run('train(runner, agent, config, logger = logger, logwriter = logwriter )')
|
||||||
|
# python -m torch.utils.bottleneck /path/to/source/script.py [args] is also a good solution...
|
||||||
|
|
||||||
|
print("Training Finished.")
|
||||||
|
|
||||||
|
print("Evaluating...")
|
||||||
|
rltorch.env.simulateEnvEps(env, actor, config, total_episodes = config['total_evaluation_episodes'], logger = logger, name = "Evaluation")
|
||||||
|
print("Evaulations Done.")
|
||||||
|
|
||||||
|
logwriter.close() # We don't need to write anything out to disk anymore
|
24
rltorch/action_selector/StochasticSelector.py
Normal file
24
rltorch/action_selector/StochasticSelector.py
Normal file
|
@ -0,0 +1,24 @@
|
||||||
|
from random import randrange
|
||||||
|
import torch
|
||||||
|
from torch.distributions import Categorical
|
||||||
|
import rltorch
|
||||||
|
from rltorch.action_selector import ArgMaxSelector
|
||||||
|
|
||||||
|
class StochasticSelector(ArgMaxSelector):
|
||||||
|
def __init__(self, model, action_size, memory, device = None):
|
||||||
|
super(StochasticSelector, self).__init__(model, action_size, device = device)
|
||||||
|
self.model = model
|
||||||
|
self.action_size = action_size
|
||||||
|
self.device = device
|
||||||
|
if not isinstance(memory, rltorch.memory.EpisodeMemory):
|
||||||
|
raise ValueError("Memory must be of instance EpisodeMemory")
|
||||||
|
self.memory = memory
|
||||||
|
def best_act(self, state, log_prob = True):
|
||||||
|
if self.device is not None:
|
||||||
|
state = state.to(self.device)
|
||||||
|
action_probabilities = self.model(state)
|
||||||
|
distribution = Categorical(action_probabilities)
|
||||||
|
action = distribution.sample()
|
||||||
|
if log_prob:
|
||||||
|
self.memory.append_log_probs(distribution.log_prob(action))
|
||||||
|
return action.item()
|
|
@ -1,3 +1,4 @@
|
||||||
from .ArgMaxSelector import *
|
from .ArgMaxSelector import *
|
||||||
from .EpsilonGreedySelector import *
|
from .EpsilonGreedySelector import *
|
||||||
from .RandomSelector import *
|
from .RandomSelector import *
|
||||||
|
from .StochasticSelector import *
|
51
rltorch/agents/REINFORCEAgent.py
Normal file
51
rltorch/agents/REINFORCEAgent.py
Normal file
|
@ -0,0 +1,51 @@
|
||||||
|
import rltorch
|
||||||
|
from copy import deepcopy
|
||||||
|
import torch
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
class REINFORCEAgent:
|
||||||
|
def __init__(self, net , memory, config, target_net = None, logger = None):
|
||||||
|
self.net = net
|
||||||
|
if not isinstance(memory, rltorch.memory.EpisodeMemory):
|
||||||
|
raise ValueError("Memory must be of instance EpisodeMemory")
|
||||||
|
self.memory = memory
|
||||||
|
self.config = deepcopy(config)
|
||||||
|
self.target_net = target_net
|
||||||
|
self.logger = logger
|
||||||
|
|
||||||
|
def _discount_rewards(self, rewards):
|
||||||
|
discounted_rewards = torch.zeros_like(rewards)
|
||||||
|
running_add = 0
|
||||||
|
for t in reversed(range(len(rewards))):
|
||||||
|
running_add = running_add * self.config['discount_rate'] + rewards[t]
|
||||||
|
discounted_rewards[t] = running_add
|
||||||
|
|
||||||
|
# Normalize rewards
|
||||||
|
discounted_rewards = (discounted_rewards - discounted_rewards.mean()) / (discounted_rewards.std() + np.finfo('float').eps)
|
||||||
|
return discounted_rewards
|
||||||
|
|
||||||
|
def learn(self):
|
||||||
|
episode_batch = self.memory.recall()
|
||||||
|
state_batch, action_batch, reward_batch, next_state_batch, done_batch, log_prob_batch = zip(*episode_batch)
|
||||||
|
|
||||||
|
discount_reward_batch = self._discount_rewards(torch.tensor(reward_batch))
|
||||||
|
log_prob_batch = torch.cat(log_prob_batch)
|
||||||
|
|
||||||
|
policy_loss = (-1 * log_prob_batch * discount_reward_batch).sum()
|
||||||
|
|
||||||
|
if self.logger is not None:
|
||||||
|
self.logger.append("Loss", policy_loss.item())
|
||||||
|
|
||||||
|
self.net.zero_grad()
|
||||||
|
policy_loss.backward()
|
||||||
|
self.net.clamp_gradients()
|
||||||
|
self.net.step()
|
||||||
|
|
||||||
|
if self.target_net is not None:
|
||||||
|
if 'target_sync_tau' in self.config:
|
||||||
|
self.target_net.partial_sync(self.config['target_sync_tau'])
|
||||||
|
else:
|
||||||
|
self.target_net.sync()
|
||||||
|
|
||||||
|
# Memory is irrelevant for future training
|
||||||
|
self.memory.clear()
|
|
@ -1 +1,2 @@
|
||||||
from .DQNAgent import *
|
from .DQNAgent import *
|
||||||
|
from .REINFORCEAgent import *
|
44
rltorch/memory/EpisodeMemory.py
Normal file
44
rltorch/memory/EpisodeMemory.py
Normal file
|
@ -0,0 +1,44 @@
|
||||||
|
import random
|
||||||
|
from collections import namedtuple
|
||||||
|
import torch
|
||||||
|
Transition = namedtuple('Transition',
|
||||||
|
('state', 'action', 'reward', 'next_state', 'done'))
|
||||||
|
|
||||||
|
class EpisodeMemory(object):
|
||||||
|
def __init__(self):
|
||||||
|
self.memory = []
|
||||||
|
self.log_probs = []
|
||||||
|
|
||||||
|
def append(self, *args):
|
||||||
|
"""Saves a transition."""
|
||||||
|
self.memory.append(Transition(*args))
|
||||||
|
|
||||||
|
def append_log_probs(self, logprob):
|
||||||
|
self.log_probs.append(logprob)
|
||||||
|
|
||||||
|
def clear(self):
|
||||||
|
self.memory.clear()
|
||||||
|
self.log_probs.clear()
|
||||||
|
|
||||||
|
def recall(self):
|
||||||
|
if len(self.memory) != len(self.log_probs):
|
||||||
|
raise ValueError("Memory and recorded log probabilities must be the same length.")
|
||||||
|
return list(zip(*tuple(zip(*self.memory)), self.log_probs))
|
||||||
|
|
||||||
|
def __len__(self):
|
||||||
|
return len(self.memory)
|
||||||
|
|
||||||
|
def __iter__(self):
|
||||||
|
return iter(self.memory)
|
||||||
|
|
||||||
|
def __contains__(self, value):
|
||||||
|
return value in self.memory
|
||||||
|
|
||||||
|
def __getitem__(self, index):
|
||||||
|
return self.memory[index]
|
||||||
|
|
||||||
|
def __setitem__(self, index, value):
|
||||||
|
self.memory[index] = value
|
||||||
|
|
||||||
|
def __reversed__(self):
|
||||||
|
return reversed(self.memory)
|
|
@ -1,2 +1,3 @@
|
||||||
|
from .EpisodeMemory import *
|
||||||
from .ReplayMemory import *
|
from .ReplayMemory import *
|
||||||
from .PrioritizedReplayMemory import *
|
from .PrioritizedReplayMemory import *
|
||||||
|
|
Loading…
Add table
Reference in a new issue