Added a single process environment runner. Also added an example for using such class.
This commit is contained in:
		
							parent
							
								
									736e73a1f7
								
							
						
					
					
						commit
						14ba64d525
					
				
					 2 changed files with 179 additions and 0 deletions
				
			
		
							
								
								
									
										135
									
								
								examples/acrobot_single_process.py
									
										
									
									
									
										Normal file
									
								
							
							
						
						
									
										135
									
								
								examples/acrobot_single_process.py
									
										
									
									
									
										Normal file
									
								
							| 
						 | 
				
			
			@ -0,0 +1,135 @@
 | 
			
		|||
import gym
 | 
			
		||||
import numpy as np
 | 
			
		||||
import torch
 | 
			
		||||
import torch.nn as nn
 | 
			
		||||
import torch.nn.functional as F
 | 
			
		||||
import rltorch
 | 
			
		||||
import rltorch.network as rn
 | 
			
		||||
import rltorch.memory as M
 | 
			
		||||
import rltorch.env as E
 | 
			
		||||
from rltorch.action_selector import ArgMaxSelector
 | 
			
		||||
from tensorboardX import SummaryWriter
 | 
			
		||||
import torch.multiprocessing as mp
 | 
			
		||||
 | 
			
		||||
class Value(nn.Module):
 | 
			
		||||
  def __init__(self, state_size, action_size):
 | 
			
		||||
    super(Value, self).__init__()
 | 
			
		||||
    self.state_size = state_size
 | 
			
		||||
    self.action_size = action_size
 | 
			
		||||
 | 
			
		||||
    self.fc1 = rn.NoisyLinear(state_size, 255)
 | 
			
		||||
    self.fc_norm = nn.LayerNorm(255)
 | 
			
		||||
    
 | 
			
		||||
    self.value_fc = rn.NoisyLinear(255, 255)
 | 
			
		||||
    self.value_fc_norm = nn.LayerNorm(255)
 | 
			
		||||
    self.value = rn.NoisyLinear(255, 1)
 | 
			
		||||
    
 | 
			
		||||
    self.advantage_fc = rn.NoisyLinear(255, 255)
 | 
			
		||||
    self.advantage_fc_norm = nn.LayerNorm(255)
 | 
			
		||||
    self.advantage = rn.NoisyLinear(255, action_size)
 | 
			
		||||
 | 
			
		||||
  def forward(self, x):
 | 
			
		||||
    x = F.relu(self.fc_norm(self.fc1(x)))
 | 
			
		||||
    
 | 
			
		||||
    state_value = F.relu(self.value_fc_norm(self.value_fc(x)))
 | 
			
		||||
    state_value = self.value(state_value)
 | 
			
		||||
    
 | 
			
		||||
    advantage = F.relu(self.advantage_fc_norm(self.advantage_fc(x)))
 | 
			
		||||
    advantage = self.advantage(advantage)
 | 
			
		||||
    
 | 
			
		||||
    x = state_value + advantage - advantage.mean()
 | 
			
		||||
    
 | 
			
		||||
    return x
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
config = {}
 | 
			
		||||
config['seed'] = 901
 | 
			
		||||
config['environment_name'] = 'Acrobot-v1'
 | 
			
		||||
config['memory_size'] = 2000
 | 
			
		||||
config['total_training_episodes'] = 5
 | 
			
		||||
config['total_evaluation_episodes'] = 2
 | 
			
		||||
config['batch_size'] = 32
 | 
			
		||||
config['learning_rate'] = 1e-3
 | 
			
		||||
config['target_sync_tau'] = 1e-1
 | 
			
		||||
config['discount_rate'] = 0.99
 | 
			
		||||
config['replay_skip'] = 0
 | 
			
		||||
# How many episodes between printing out the episode stats
 | 
			
		||||
config['print_stat_n_eps'] = 1
 | 
			
		||||
config['disable_cuda'] = False
 | 
			
		||||
# Prioritized vs Random Sampling
 | 
			
		||||
# 0 - Random sampling
 | 
			
		||||
# 1 - Only the highest prioirities
 | 
			
		||||
config['prioritized_replay_sampling_priority'] = 0.6
 | 
			
		||||
# How important are the weights for the loss?
 | 
			
		||||
# 0 - Treat all losses equally
 | 
			
		||||
# 1 - Lower the importance of high losses
 | 
			
		||||
# Should ideally start from 0 and move your way to 1 to prevent overfitting
 | 
			
		||||
config['prioritized_replay_weight_importance'] = rltorch.scheduler.ExponentialScheduler(initial_value = 0.4, end_value = 1, iterations = 5000)
 | 
			
		||||
  
 | 
			
		||||
def train(runner, agent, config, logger = None, logwriter = None):
 | 
			
		||||
    finished = False
 | 
			
		||||
    last_episode_num = 1
 | 
			
		||||
    while not finished:
 | 
			
		||||
        runner.run(config['replay_skip'] + 1)
 | 
			
		||||
        agent.learn()
 | 
			
		||||
        if logwriter is not None:
 | 
			
		||||
          if last_episode_num < runner.episode_num:
 | 
			
		||||
            last_episode_num = runner.episode_num
 | 
			
		||||
            agent.net.log_named_parameters()
 | 
			
		||||
          logwriter.write(logger)
 | 
			
		||||
        finished = runner.episode_num > config['total_training_episodes']
 | 
			
		||||
 | 
			
		||||
if __name__ == "__main__":
 | 
			
		||||
  torch.multiprocessing.set_sharing_strategy('file_system') # To not hit file descriptor memory limit
 | 
			
		||||
 | 
			
		||||
  # Setting up the environment
 | 
			
		||||
  rltorch.set_seed(config['seed'])
 | 
			
		||||
  print("Setting up environment...", end = " ")
 | 
			
		||||
  env = E.TorchWrap(gym.make(config['environment_name']))
 | 
			
		||||
  env.seed(config['seed'])
 | 
			
		||||
  print("Done.")
 | 
			
		||||
      
 | 
			
		||||
  state_size = env.observation_space.shape[0]
 | 
			
		||||
  action_size = env.action_space.n
 | 
			
		||||
 | 
			
		||||
  # Logging
 | 
			
		||||
  logger = rltorch.log.Logger()
 | 
			
		||||
  # logwriter = rltorch.log.LogWriter(logger, SummaryWriter())
 | 
			
		||||
  logwriter = rltorch.log.LogWriter(SummaryWriter())
 | 
			
		||||
 | 
			
		||||
  # Setting up the networks
 | 
			
		||||
  device = torch.device("cuda:0" if torch.cuda.is_available() and not config['disable_cuda'] else "cpu")
 | 
			
		||||
  net = rn.Network(Value(state_size, action_size), 
 | 
			
		||||
                      torch.optim.Adam, config, device = device, name = "DQN", logger = logger)
 | 
			
		||||
  target_net = rn.TargetNetwork(net, device = device)
 | 
			
		||||
  net.model.share_memory()
 | 
			
		||||
  target_net.model.share_memory()
 | 
			
		||||
 | 
			
		||||
  # Actor takes a net and uses it to produce actions from given states
 | 
			
		||||
  actor = ArgMaxSelector(net, action_size, device = device)
 | 
			
		||||
  # Memory stores experiences for later training
 | 
			
		||||
  memory = M.PrioritizedReplayMemory(capacity = config['memory_size'], alpha = config['prioritized_replay_sampling_priority'])
 | 
			
		||||
  # memory = M.ReplayMemory(capacity = config['memory_size'])
 | 
			
		||||
 | 
			
		||||
  # Runner performs a certain number of steps in the environment
 | 
			
		||||
  runner = rltorch.env.EnvironmentRunSync(env, actor, config, name = "Training", memory = memory, logwriter = logwriter)
 | 
			
		||||
 | 
			
		||||
  # Agent is what performs the training
 | 
			
		||||
  agent = rltorch.agents.DQNAgent(net, memory, config, target_net = target_net, logger = logger)
 | 
			
		||||
    
 | 
			
		||||
  print("Training...")
 | 
			
		||||
 | 
			
		||||
  train(runner, agent, config, logger = logger, logwriter = logwriter) 
 | 
			
		||||
 | 
			
		||||
  # For profiling...
 | 
			
		||||
  # import cProfile
 | 
			
		||||
  # cProfile.run('train(runner, agent, config, logger = logger, logwriter = logwriter )')
 | 
			
		||||
  # python -m torch.utils.bottleneck /path/to/source/script.py [args] is also a good solution...
 | 
			
		||||
 | 
			
		||||
  print("Training Finished.")
 | 
			
		||||
 | 
			
		||||
  print("Evaluating...")
 | 
			
		||||
  rltorch.env.simulateEnvEps(env, actor, config, total_episodes = config['total_evaluation_episodes'], logger = logger, name = "Evaluation")
 | 
			
		||||
  print("Evaulations Done.")
 | 
			
		||||
 | 
			
		||||
  logwriter.close() # We don't need to write anything out to disk anymore
 | 
			
		||||
							
								
								
									
										44
									
								
								rltorch/env/simulate.py
									
										
									
									
										vendored
									
									
								
							
							
						
						
									
										44
									
								
								rltorch/env/simulate.py
									
										
									
									
										vendored
									
									
								
							| 
						 | 
				
			
			@ -1,3 +1,6 @@
 | 
			
		|||
from copy import deepcopy 
 | 
			
		||||
import rltorch
 | 
			
		||||
 | 
			
		||||
def simulateEnvEps(env, actor, config, total_episodes = 1, memory = None, logger = None, name = ""):
 | 
			
		||||
  for episode in range(total_episodes):
 | 
			
		||||
    state = env.reset()
 | 
			
		||||
| 
						 | 
				
			
			@ -19,3 +22,44 @@ def simulateEnvEps(env, actor, config, total_episodes = 1, memory = None, logger
 | 
			
		|||
    if logger is not None:
 | 
			
		||||
      logger.append(name + '/EpisodeReward', episode_reward)
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
class EnvironmentRunSync():
 | 
			
		||||
  def __init__(self, env, actor, config, memory = None, logwriter = None, name = ""):
 | 
			
		||||
    self.env = env
 | 
			
		||||
    self.name = name
 | 
			
		||||
    self.actor = actor
 | 
			
		||||
    self.config = deepcopy(config)
 | 
			
		||||
    self.logwriter = logwriter
 | 
			
		||||
    self.memory = memory
 | 
			
		||||
    self.episode_num = 1
 | 
			
		||||
    self.episode_reward = 0
 | 
			
		||||
    self.last_state = env.reset()
 | 
			
		||||
 | 
			
		||||
  def run(self, iterations):
 | 
			
		||||
    state = self.last_state
 | 
			
		||||
    logger = rltorch.log.Logger() if self.logwriter is not None else None
 | 
			
		||||
    for _ in range(iterations):
 | 
			
		||||
      action = self.actor.act(state)
 | 
			
		||||
      next_state, reward, done, _ = self.env.step(action)
 | 
			
		||||
       
 | 
			
		||||
      self.episode_reward += reward
 | 
			
		||||
      if self.memory is not None:
 | 
			
		||||
        self.memory.append(state, action, reward, next_state, done)
 | 
			
		||||
       
 | 
			
		||||
      state = next_state
 | 
			
		||||
 | 
			
		||||
      if done:
 | 
			
		||||
        if self.episode_num % self.config['print_stat_n_eps'] == 0:
 | 
			
		||||
          print("episode: {}/{}, score: {}"
 | 
			
		||||
            .format(self.episode_num, self.config['total_training_episodes'], self.episode_reward))
 | 
			
		||||
          
 | 
			
		||||
        if self.logwriter is not None:
 | 
			
		||||
          logger.append(self.name + '/EpisodeReward', self.episode_reward)
 | 
			
		||||
        self.episode_reward = 0
 | 
			
		||||
        state = self.env.reset()
 | 
			
		||||
        self.episode_num +=  1
 | 
			
		||||
          
 | 
			
		||||
    if self.logwriter is not None:
 | 
			
		||||
      self.logwriter.write(logger)
 | 
			
		||||
    
 | 
			
		||||
    self.last_state = state
 | 
			
		||||
		Loading…
	
	Add table
		Add a link
		
	
		Reference in a new issue