Implemented REINFORCE into the library

This commit is contained in:
Brandon Rozek 2019-02-16 20:30:27 -05:00
parent 14ba64d525
commit 21b820b401
7 changed files with 250 additions and 2 deletions

View file

@ -0,0 +1,24 @@
from random import randrange
import torch
from torch.distributions import Categorical
import rltorch
from rltorch.action_selector import ArgMaxSelector
class StochasticSelector(ArgMaxSelector):
def __init__(self, model, action_size, memory, device = None):
super(StochasticSelector, self).__init__(model, action_size, device = device)
self.model = model
self.action_size = action_size
self.device = device
if not isinstance(memory, rltorch.memory.EpisodeMemory):
raise ValueError("Memory must be of instance EpisodeMemory")
self.memory = memory
def best_act(self, state, log_prob = True):
if self.device is not None:
state = state.to(self.device)
action_probabilities = self.model(state)
distribution = Categorical(action_probabilities)
action = distribution.sample()
if log_prob:
self.memory.append_log_probs(distribution.log_prob(action))
return action.item()

View file

@ -1,3 +1,4 @@
from .ArgMaxSelector import *
from .EpsilonGreedySelector import *
from .RandomSelector import *
from .RandomSelector import *
from .StochasticSelector import *

View file

@ -0,0 +1,51 @@
import rltorch
from copy import deepcopy
import torch
import numpy as np
class REINFORCEAgent:
def __init__(self, net , memory, config, target_net = None, logger = None):
self.net = net
if not isinstance(memory, rltorch.memory.EpisodeMemory):
raise ValueError("Memory must be of instance EpisodeMemory")
self.memory = memory
self.config = deepcopy(config)
self.target_net = target_net
self.logger = logger
def _discount_rewards(self, rewards):
discounted_rewards = torch.zeros_like(rewards)
running_add = 0
for t in reversed(range(len(rewards))):
running_add = running_add * self.config['discount_rate'] + rewards[t]
discounted_rewards[t] = running_add
# Normalize rewards
discounted_rewards = (discounted_rewards - discounted_rewards.mean()) / (discounted_rewards.std() + np.finfo('float').eps)
return discounted_rewards
def learn(self):
episode_batch = self.memory.recall()
state_batch, action_batch, reward_batch, next_state_batch, done_batch, log_prob_batch = zip(*episode_batch)
discount_reward_batch = self._discount_rewards(torch.tensor(reward_batch))
log_prob_batch = torch.cat(log_prob_batch)
policy_loss = (-1 * log_prob_batch * discount_reward_batch).sum()
if self.logger is not None:
self.logger.append("Loss", policy_loss.item())
self.net.zero_grad()
policy_loss.backward()
self.net.clamp_gradients()
self.net.step()
if self.target_net is not None:
if 'target_sync_tau' in self.config:
self.target_net.partial_sync(self.config['target_sync_tau'])
else:
self.target_net.sync()
# Memory is irrelevant for future training
self.memory.clear()

View file

@ -1 +1,2 @@
from .DQNAgent import *
from .DQNAgent import *
from .REINFORCEAgent import *

View file

@ -0,0 +1,44 @@
import random
from collections import namedtuple
import torch
Transition = namedtuple('Transition',
('state', 'action', 'reward', 'next_state', 'done'))
class EpisodeMemory(object):
def __init__(self):
self.memory = []
self.log_probs = []
def append(self, *args):
"""Saves a transition."""
self.memory.append(Transition(*args))
def append_log_probs(self, logprob):
self.log_probs.append(logprob)
def clear(self):
self.memory.clear()
self.log_probs.clear()
def recall(self):
if len(self.memory) != len(self.log_probs):
raise ValueError("Memory and recorded log probabilities must be the same length.")
return list(zip(*tuple(zip(*self.memory)), self.log_probs))
def __len__(self):
return len(self.memory)
def __iter__(self):
return iter(self.memory)
def __contains__(self, value):
return value in self.memory
def __getitem__(self, index):
return self.memory[index]
def __setitem__(self, index, value):
self.memory[index] = value
def __reversed__(self):
return reversed(self.memory)

View file

@ -1,2 +1,3 @@
from .EpisodeMemory import *
from .ReplayMemory import *
from .PrioritizedReplayMemory import *