Implemented REINFORCE into the library
This commit is contained in:
parent
14ba64d525
commit
21b820b401
7 changed files with 250 additions and 2 deletions
24
rltorch/action_selector/StochasticSelector.py
Normal file
24
rltorch/action_selector/StochasticSelector.py
Normal file
|
@ -0,0 +1,24 @@
|
|||
from random import randrange
|
||||
import torch
|
||||
from torch.distributions import Categorical
|
||||
import rltorch
|
||||
from rltorch.action_selector import ArgMaxSelector
|
||||
|
||||
class StochasticSelector(ArgMaxSelector):
|
||||
def __init__(self, model, action_size, memory, device = None):
|
||||
super(StochasticSelector, self).__init__(model, action_size, device = device)
|
||||
self.model = model
|
||||
self.action_size = action_size
|
||||
self.device = device
|
||||
if not isinstance(memory, rltorch.memory.EpisodeMemory):
|
||||
raise ValueError("Memory must be of instance EpisodeMemory")
|
||||
self.memory = memory
|
||||
def best_act(self, state, log_prob = True):
|
||||
if self.device is not None:
|
||||
state = state.to(self.device)
|
||||
action_probabilities = self.model(state)
|
||||
distribution = Categorical(action_probabilities)
|
||||
action = distribution.sample()
|
||||
if log_prob:
|
||||
self.memory.append_log_probs(distribution.log_prob(action))
|
||||
return action.item()
|
|
@ -1,3 +1,4 @@
|
|||
from .ArgMaxSelector import *
|
||||
from .EpsilonGreedySelector import *
|
||||
from .RandomSelector import *
|
||||
from .RandomSelector import *
|
||||
from .StochasticSelector import *
|
51
rltorch/agents/REINFORCEAgent.py
Normal file
51
rltorch/agents/REINFORCEAgent.py
Normal file
|
@ -0,0 +1,51 @@
|
|||
import rltorch
|
||||
from copy import deepcopy
|
||||
import torch
|
||||
import numpy as np
|
||||
|
||||
class REINFORCEAgent:
|
||||
def __init__(self, net , memory, config, target_net = None, logger = None):
|
||||
self.net = net
|
||||
if not isinstance(memory, rltorch.memory.EpisodeMemory):
|
||||
raise ValueError("Memory must be of instance EpisodeMemory")
|
||||
self.memory = memory
|
||||
self.config = deepcopy(config)
|
||||
self.target_net = target_net
|
||||
self.logger = logger
|
||||
|
||||
def _discount_rewards(self, rewards):
|
||||
discounted_rewards = torch.zeros_like(rewards)
|
||||
running_add = 0
|
||||
for t in reversed(range(len(rewards))):
|
||||
running_add = running_add * self.config['discount_rate'] + rewards[t]
|
||||
discounted_rewards[t] = running_add
|
||||
|
||||
# Normalize rewards
|
||||
discounted_rewards = (discounted_rewards - discounted_rewards.mean()) / (discounted_rewards.std() + np.finfo('float').eps)
|
||||
return discounted_rewards
|
||||
|
||||
def learn(self):
|
||||
episode_batch = self.memory.recall()
|
||||
state_batch, action_batch, reward_batch, next_state_batch, done_batch, log_prob_batch = zip(*episode_batch)
|
||||
|
||||
discount_reward_batch = self._discount_rewards(torch.tensor(reward_batch))
|
||||
log_prob_batch = torch.cat(log_prob_batch)
|
||||
|
||||
policy_loss = (-1 * log_prob_batch * discount_reward_batch).sum()
|
||||
|
||||
if self.logger is not None:
|
||||
self.logger.append("Loss", policy_loss.item())
|
||||
|
||||
self.net.zero_grad()
|
||||
policy_loss.backward()
|
||||
self.net.clamp_gradients()
|
||||
self.net.step()
|
||||
|
||||
if self.target_net is not None:
|
||||
if 'target_sync_tau' in self.config:
|
||||
self.target_net.partial_sync(self.config['target_sync_tau'])
|
||||
else:
|
||||
self.target_net.sync()
|
||||
|
||||
# Memory is irrelevant for future training
|
||||
self.memory.clear()
|
|
@ -1 +1,2 @@
|
|||
from .DQNAgent import *
|
||||
from .DQNAgent import *
|
||||
from .REINFORCEAgent import *
|
44
rltorch/memory/EpisodeMemory.py
Normal file
44
rltorch/memory/EpisodeMemory.py
Normal file
|
@ -0,0 +1,44 @@
|
|||
import random
|
||||
from collections import namedtuple
|
||||
import torch
|
||||
Transition = namedtuple('Transition',
|
||||
('state', 'action', 'reward', 'next_state', 'done'))
|
||||
|
||||
class EpisodeMemory(object):
|
||||
def __init__(self):
|
||||
self.memory = []
|
||||
self.log_probs = []
|
||||
|
||||
def append(self, *args):
|
||||
"""Saves a transition."""
|
||||
self.memory.append(Transition(*args))
|
||||
|
||||
def append_log_probs(self, logprob):
|
||||
self.log_probs.append(logprob)
|
||||
|
||||
def clear(self):
|
||||
self.memory.clear()
|
||||
self.log_probs.clear()
|
||||
|
||||
def recall(self):
|
||||
if len(self.memory) != len(self.log_probs):
|
||||
raise ValueError("Memory and recorded log probabilities must be the same length.")
|
||||
return list(zip(*tuple(zip(*self.memory)), self.log_probs))
|
||||
|
||||
def __len__(self):
|
||||
return len(self.memory)
|
||||
|
||||
def __iter__(self):
|
||||
return iter(self.memory)
|
||||
|
||||
def __contains__(self, value):
|
||||
return value in self.memory
|
||||
|
||||
def __getitem__(self, index):
|
||||
return self.memory[index]
|
||||
|
||||
def __setitem__(self, index, value):
|
||||
self.memory[index] = value
|
||||
|
||||
def __reversed__(self):
|
||||
return reversed(self.memory)
|
|
@ -1,2 +1,3 @@
|
|||
from .EpisodeMemory import *
|
||||
from .ReplayMemory import *
|
||||
from .PrioritizedReplayMemory import *
|
||||
|
|
Loading…
Add table
Add a link
Reference in a new issue