matmod/model.py

315 lines
11 KiB
Python

"""
Matrix model semantics and satisfiability of
a given logic.
"""
from common import set_to_str
from logic import (
get_propostional_variables, Logic,
Operation, PropositionalVariable, Term
)
from collections import defaultdict
from functools import cached_property, lru_cache, reduce
from itertools import chain, combinations_with_replacement, permutations, product
from typing import Dict, List, Optional, Set, Tuple
__all__ = ['ModelValue', 'ModelFunction', 'Model', 'Interpretation']
class ModelValue:
def __init__(self, name):
self.name = name
self.hashed_value = hash(self.name)
def immutable(self, name, value):
raise Exception("Model values are immutable")
self.__setattr__ = immutable
def __str__(self):
return self.name
def __hash__(self):
return self.hashed_value
def __eq__(self, other):
return isinstance(other, ModelValue) and self.name == other.name
def __deepcopy__(self, _):
return ModelValue(self.name)
class ModelFunction:
def __init__(self, arity: int, mapping, operation_name = ""):
self.operation_name = operation_name
self.arity = arity
# Transform the mapping such that the
# key is always a tuple of model values
corrected_mapping: Dict[Tuple[ModelValue], ModelValue] = {}
for k, v in mapping.items():
if isinstance(k, tuple):
assert len(k) == arity
corrected_mapping[k] = v
elif isinstance(k, list):
assert len(k) == arity
corrected_mapping[tuple(k)] = v
else: # Assume it's atomic
assert arity == 1
corrected_mapping[(k,)] = v
self.mapping = corrected_mapping
@cached_property
def domain(self):
result_set: Set[ModelValue] = set()
for args in self.mapping.keys():
for v in args:
result_set.add(v)
return result_set
def __str__(self):
if self.arity == 1:
return unary_function_str(self)
elif self.arity == 2:
return binary_function_str(self)
# Default return dictionary representation
str_dict = dict()
for k, v in self.mapping.items():
inputstr = "(" + ", ".join(str(ki) for ki in k) + ")"
str_dict[inputstr] = str(v)
return self.operation_name + " " + str(str_dict)
def __call__(self, *args):
return self.mapping[args]
def unary_function_str(f: ModelFunction) -> str:
assert isinstance(f, ModelFunction) and f.arity == 1
sorted_domain = sorted(f.domain, key=lambda v : v.name)
header_line = f" {f.operation_name} | " + " ".join((str(v) for v in sorted_domain))
sep_line = "-" + ("-" * len(f.operation_name)) + "-+-" +\
("-" * len(sorted_domain)) +\
("-" * reduce(lambda sum, v : sum + len(v.name), sorted_domain, 0))
data_line = (" " * (len(f.operation_name) + 2)) + "| " + " ".join((str(f.mapping[(v,)]) for v in sorted_domain))
return "\n".join((header_line, sep_line, data_line)) + "\n"
def binary_function_str(f: ModelFunction) -> str:
assert isinstance(f, ModelFunction) and f.arity == 2
sorted_domain = sorted(f.domain, key=lambda v : v.name)
max_col_width = max(chain((len(v.name) for v in sorted_domain), (len(f.operation_name),)))
header_line = f" {f.operation_name} " +\
(" " * (max_col_width - len(f.operation_name))) + "| " +\
" ".join((str(v) for v in sorted_domain))
sep_line = "-" + ("-" * max_col_width) + "-+-" +\
("-" * len(sorted_domain)) +\
("-" * reduce(lambda sum, v : sum + len(v.name), sorted_domain, 0))
data_lines = ""
for row_v in sorted_domain:
data_line = f" {row_v.name} | " + " ".join((str(f.mapping[(row_v, col_v)]) for col_v in sorted_domain))
data_lines += data_line + "\n"
return "\n".join((header_line, sep_line, data_lines))
Interpretation = Dict[Operation, ModelFunction]
class Model:
def __init__(
self,
carrier_set: Set[ModelValue],
logical_operations: Set[ModelFunction],
designated_values: Set[ModelValue],
name: Optional[str] = None
):
assert designated_values <= carrier_set
self.carrier_set = carrier_set
self.logical_operations = logical_operations
self.designated_values = designated_values
self.name = str(abs(hash((
frozenset(carrier_set),
frozenset(logical_operations),
frozenset(designated_values)
))))[:5] if name is None else name
def __str__(self):
result = ("=" * 25) + f"""
Model Name: {self.name}
Carrier Set: {set_to_str(self.carrier_set)}
Designated Values: {set_to_str(self.designated_values)}
"""
for function in self.logical_operations:
result += f"{str(function)}\n"
return result + ("=" * 25) + "\n"
def evaluate_term(
t: Term, f: Dict[PropositionalVariable, ModelValue],
interpretation: Dict[Operation, ModelFunction]) -> ModelValue:
"""
Given a term in a logic, mapping
between terms and model values,
as well as an interpretation
of operations to model functions,
return the evaluated model value.
"""
if isinstance(t, PropositionalVariable):
return f[t]
model_function = interpretation[t.operation]
model_arguments: List[ModelValue] = []
for logic_arg in t.arguments:
model_arg = evaluate_term(logic_arg, f, interpretation)
model_arguments.append(model_arg)
return model_function(*model_arguments)
def all_model_valuations(
pvars: Tuple[PropositionalVariable],
mvalues: Tuple[ModelValue]):
"""
Given propositional variables and model values,
produce every possible mapping between the two.
"""
all_possible_values = product(mvalues, repeat=len(pvars))
for valuation in all_possible_values:
mapping: Dict[PropositionalVariable, ModelValue] = {}
assert len(pvars) == len(valuation)
for pvar, value in zip(pvars, valuation):
mapping[pvar] = value
yield mapping
@lru_cache
def all_model_valuations_cached(
pvars: Tuple[PropositionalVariable],
mvalues: Tuple[ModelValue]):
return list(all_model_valuations(pvars, mvalues))
def satisfiable(logic: Logic, model: Model, interpretation: Dict[Operation, ModelFunction]) -> bool:
"""
Determine whether a model satisfies a logic
given an interpretation.
"""
pvars = tuple(get_propostional_variables(tuple(logic.rules)))
mappings = all_model_valuations_cached(pvars, tuple(model.carrier_set))
for mapping in mappings:
# Make sure that the model satisfies each of the rules
for rule in logic.rules:
# The check only applies if the premises are designated
premise_met = True
premise_ts: Set[ModelValue] = set()
for premise in rule.premises:
premise_t = evaluate_term(premise, mapping, interpretation)
# As soon as one premise is not designated,
# move to the next rule.
if premise_t not in model.designated_values:
premise_met = False
break
# If designated, keep track of the evaluated term
premise_ts.add(premise_t)
if not premise_met:
continue
# With the premises designated, make sure the consequent is designated
consequent_t = evaluate_term(rule.conclusion, mapping, interpretation)
if consequent_t not in model.designated_values:
return False
return True
def model_closure(initial_set: Set[ModelValue], mfunctions: Set[ModelFunction], top: Optional[ModelValue], bottom: Optional[ModelValue]) -> Set[ModelValue]:
"""
Given an initial set of model values and a set of model functions,
compute the complete set of model values that are closed
under the operations.
If top or bottom is encountered, then we end the saturation procedure early.
"""
closure_set: Set[ModelValue] = initial_set
last_new: Set[ModelValue] = initial_set
changed: bool = True
topbottom_found = False
while changed:
changed = False
new_elements: Set[ModelValue] = set()
old_closure: Set[ModelValue] = closure_set - last_new
# arity -> args
cached_args = defaultdict(list)
# Pass elements into each model function
for mfun in mfunctions:
# If a previous function shared the same arity,
# we'll use the same set of computed arguments
# to pass into the model functions.
if mfun.arity in cached_args:
for args in cached_args[mfun.arity]:
# Compute the new elements
# given the cached arguments.
element = mfun(*args)
if element not in closure_set:
new_elements.add(element)
# Optimization: Break out of computation
# early when top or bottom element is foun
if top is not None and element == top:
topbottom_found = True
if bottom is not None and element == bottom:
topbottom_found = True
if topbottom_found:
break
if topbottom_found:
break
# We don't need to compute the arguments
# thanks to the cache, so move onto the
# next function.
continue
# At this point, we don't have cached arguments, so we need
# to compute this set.
# Each argument must have at least one new element to not repeat
# work. We'll range over the number of new model values within our
# argument.
for num_new in range(1, mfun.arity + 1):
new_args = combinations_with_replacement(last_new, r=num_new)
old_args = combinations_with_replacement(old_closure, r=mfun.arity - num_new)
# Determine every possible ordering of the concatenated
# new and old model values.
for new_arg, old_arg in product(new_args, old_args):
for args in permutations(new_arg + old_arg):
cached_args[mfun.arity].append(args)
element = mfun(*args)
if element not in closure_set:
new_elements.add(element)
# Optimization: Break out of computation
# early when top or bottom element is foun
if top is not None and element == top:
topbottom_found = True
if bottom is not None and element == bottom:
topbottom_found = True
if topbottom_found:
break
if topbottom_found:
break
if topbottom_found:
break
closure_set.update(new_elements)
changed = len(new_elements) > 0
last_new = new_elements
if topbottom_found:
break
return closure_set