matmod/parse_magic.py
2024-10-28 12:54:13 -04:00

587 lines
19 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""
Parses the Magic Ugly Data File Format
Assumes the base logic is R with no extra connectives
"""
import argparse
import re
import sys
from typing import TextIO, List, Optional, Tuple, Set, Dict
from model import Model, ModelValue, ModelFunction
from logic import (
Implication,
Conjunction,
Negation,
Necessitation,
Disjunction
)
from vsp import has_vsp
class SourceFile:
def __init__(self, fileobj: TextIO):
self.fileobj = fileobj
self.current_line = 0
self.reststr = ""
def next_line(self):
if self.reststr != "":
reststr = self.reststr
self.reststr = ""
return reststr
contents = next(self.fileobj).strip()
self.current_line += 1
return contents
def __next__(self):
"""
Grabs the next word token from the stream
"""
if self.reststr == "":
self.reststr = next(self.fileobj).strip()
self.current_line += 1
tokens = self.reststr.split(" ")
next_token = tokens[0]
self.reststr = " ".join(tokens[1:])
return next_token
def set_reststr(self, reststr: str):
self.reststr = reststr
class UglyHeader:
def __init__(self, negation: bool, necessitation: bool, custom_model_functions: List[Tuple[int, str]]):
self.negation = negation
self.necessitation = necessitation
self.custom_model_functions = custom_model_functions
class ModelBuilder:
def __init__(self):
self.size : int = 0
self.carrier_set : Set[ModelValue] = set()
self.num_negation: int = 0
self.mnegation: Optional[ModelFunction] = None
self.num_order: int = 0
self.mconjunction: Optional[ModelFunction] = None
self.mdisjunction: Optional[ModelFunction] = None
self.num_designated: int = 0
self.designated_values: Set[ModelValue] = set()
self.num_implication: int = 0
self.mimplication: Optional[ModelFunction] = None
self.num_necessitation: int = 0
self.mnecessitation: Optional[ModelFunction] = None
self.custom_model_functions: Dict[str, ModelFunction] = {}
class Stage:
def __init__(self, name: str):
self.name = name
self.next: Optional['Stage'] = None
self.previous: Optional['Stage'] = None
def __str__(self):
return self.name
class Stages:
def __init__(self):
self.stages: Dict[str, Stage] = {}
self.last_stage: Optional[Stage] = None
def add(self, name: str):
stage = Stage(name)
stage.next = stage
if self.last_stage is not None:
stage.previous = self.last_stage
self.last_stage.next = stage
else:
# The previous of the first stage
# is the end
stage.previous = Stage("end")
self.stages[name] = stage
self.last_stage = stage
def next_stage(self, name):
return self.stages[name].next
def previous_stage(self, name):
return self.stages[name].previous
def get(self, name):
return self.stages[name]
def derive_stages(header: UglyHeader) -> Stages:
stages = Stages()
stages.add("size")
if header.negation:
stages.add("negation")
stages.add("order")
stages.add("designated")
stages.add("implication")
if header.necessitation:
stages.add("necessitation")
for (adicity, symbol) in header.custom_model_functions:
stages.add(f"custom--{adicity}--{symbol}")
stages.add("process_model")
# After processing the model, go to the previous stage
stages.get("process_model").next = stages.get("process_model").previous
return stages
def parse_matrices(infile: SourceFile) -> List[Tuple[Model, Dict]]:
solutions = [] # Reset
header = parse_header(infile)
stages = derive_stages(header)
first_run = True
current_model_parts = ModelBuilder()
stage = stages.get("size")
while True:
print("Current stage:", stage)
match stage.name:
case "end":
break
case "process_model":
process_model(current_model_parts, solutions)
stage = stage.next
case "size":
processed = process_sizes(infile, current_model_parts, first_run)
first_run = False
stage = stage.next if processed else stage.previous
case "negation":
processed = process_negations(infile, current_model_parts)
stage = stage.next if processed else stage.previous
case "order":
processed = process_orders(infile, current_model_parts)
stage = stage.next if processed else stage.previous
case "designated":
processed = process_designateds(infile, current_model_parts)
stage = stage.next if processed else stage.previous
case "implication":
processed = process_implications(infile, current_model_parts)
stage = stage.next if processed else stage.previous
case "necessitation":
processed = process_necessitations(infile, current_model_parts)
stage = stage.next if processed else stage.previous
case _:
custom_stage = re.search(r"custom--(\d+)--(\S+)", stage.name)
if custom_stage is None or len(custom_stage.groups()) != 2:
raise NotImplementedError(f"Unrecognized Stage: {stage.name}")
adicity, symbol = custom_stage.groups()
adicity = int(adicity)
if adicity == 0:
# We don't need to do anything here
stage = stage.next
elif adicity == 1:
processed = process_monadic_connective(infile, symbol, current_model_parts)
stage = stage.next if processed else stage.previous
elif adicity == 2:
processed = process_dyadic_connective(infile, symbol, current_model_parts)
stage = stage.next if processed else stage.previous
else:
raise NotImplementedError("Unable to process connectives of adicity greater than 2")
return solutions
def process_sizes(infile: SourceFile, current_model_parts: ModelBuilder, first_run: bool) -> bool:
try:
size = parse_size(infile, first_run)
except StopIteration:
return False
if size is None:
return False
carrier_set = carrier_set_from_size(size)
current_model_parts.size = size
current_model_parts.carrier_set = carrier_set
# Reset counts
current_model_parts.num_negation = 0
current_model_parts.num_order = 0
current_model_parts.num_designated = 0
current_model_parts.num_implication = 0
current_model_parts.num_necessitation = 0
return True
def process_negations(infile: SourceFile, current_model_parts: ModelBuilder) -> bool:
"""Stage 2 (Optional)"""
mnegation = parse_single_negation(infile, current_model_parts.size)
if mnegation is None:
return False
current_model_parts.num_negation += 1
current_model_parts.mnegation = mnegation
# Reset counts
current_model_parts.num_order = 0
current_model_parts.num_designated = 0
current_model_parts.num_implication = 0
current_model_parts.num_necessitation = 0
return True
def process_orders(infile: SourceFile, current_model_parts: ModelBuilder) -> bool:
"""Stage 3"""
result = parse_single_order(infile, current_model_parts.size)
if result is None:
return False
mconjunction, mdisjunction = result
current_model_parts.num_order += 1
current_model_parts.mconjunction = mconjunction
current_model_parts.mdisjunction = mdisjunction
# Reset counts
current_model_parts.num_designated = 0
current_model_parts.num_implication = 0
current_model_parts.num_necessitation = 0
return True
def process_designateds(infile: SourceFile, current_model_parts: ModelBuilder) -> bool:
"""Stage 4"""
designated_values = parse_single_designated(infile, current_model_parts.size)
if designated_values is None:
return False
current_model_parts.num_designated += 1
current_model_parts.designated_values = designated_values
# Reset counts
current_model_parts.num_implication = 0
current_model_parts.num_necessitation = 0
return True
def process_implications(infile: SourceFile, current_model_parts: ModelBuilder) -> bool:
"""Stage 5"""
mimplication = parse_single_implication(infile, current_model_parts.size)
if mimplication is None:
return False
current_model_parts.num_implication += 1
current_model_parts.mimplication = mimplication
# Reset counts
current_model_parts.num_necessitation = 0
return True
def process_necessitations(infile: SourceFile, current_model_parts: ModelBuilder) -> bool:
mnecessitation = parse_single_necessitation(infile, current_model_parts.size)
if mnecessitation is None:
return False
current_model_parts.num_necessitation += 1
current_model_parts.mnecessitation = mnecessitation
return True
def process_monadic_connective(infile: SourceFile, symbol: str, current_model_parts: ModelBuilder) -> bool:
mfunction = parse_single_monadic_connective(infile, symbol, current_model_parts.size)
if mfunction is None:
return False
current_model_parts.custom_model_functions[symbol] = mfunction
return True
def process_dyadic_connective(infile: SourceFile, symbol: str, current_model_parts: ModelBuilder) -> bool:
mfunction = parse_single_dyadic_connective(infile, symbol, current_model_parts.size)
if mfunction is None:
return False
current_model_parts.custom_model_functions[symbol] = mfunction
return True
def process_model(mp: ModelBuilder, solutions: List[Tuple[Model, Dict]]):
"""Create Model"""
assert mp.mimplication is not None
assert mp.size + 1 == len(mp.carrier_set)
logical_operations = { mp.mimplication }
model_name = f"{mp.size + 1}{'.' + str(mp.num_negation) if mp.num_negation != 0 else ''}.{mp.num_order}.{mp.num_designated}.{mp.num_implication}{'.' + str(mp.num_necessitation) if mp.num_necessitation != 0 else ''}"
model = Model(mp.carrier_set, logical_operations, mp.designated_values, name=model_name)
interpretation = {
Implication: mp.mimplication
}
if mp.mnegation is not None:
logical_operations.add(mp.mnegation)
interpretation[Negation] = mp.mnegation
if mp.mconjunction is not None:
logical_operations.add(mp.mconjunction)
interpretation[Conjunction] = mp.mconjunction
if mp.mdisjunction is not None:
logical_operations.add(mp.mdisjunction)
interpretation[Disjunction] = mp.mdisjunction
if mp.mnecessitation is not None:
logical_operations.add(mp.mnecessitation)
interpretation[Necessitation] = mp.mnecessitation
for custom_mf in mp.custom_model_functions.values():
if custom_mf is None:
logical_operations.add(custom_mf)
# NOTE: No need to assign interpretation
# for VSP check
solutions.append((model, interpretation))
print(f"Parsed Matrix {model.name}")
def parse_header(infile: SourceFile) -> UglyHeader:
"""
Parse the header line from the ugly data format.
"""
header_line = infile.next_line()
header_tokens = header_line.split(" ")
assert header_tokens[0] in ["0", "1"]
assert header_tokens[6] in ["0", "1"]
assert len(header_tokens) >= 7
negation_defined = bool(int(header_tokens[0]))
necessitation_defined = bool(int(header_tokens[6]))
num_custom_connectives = int(header_tokens[7])
custom_model_functions: List[Tuple[int, str]] = []
for i in range(num_custom_connectives):
arity = int(header_tokens[7 + (2 * i) + 1])
symbol = header_tokens[7 + (2 * i) + 2]
custom_model_functions.append((arity, symbol))
return UglyHeader(negation_defined, necessitation_defined, custom_model_functions)
def carrier_set_from_size(size: int) -> Set[ModelValue]:
"""
Construct a carrier set of model values
based on the desired size.
"""
return {
mvalue_from_index(i) for i in range(size + 1)
}
def parse_size(infile: SourceFile, first_run: bool) -> Optional[int]:
"""
Parse the line representing the matrix size.
"""
size = int(infile.next_line())
# HACK: When necessitation and custom connectives are enabled
# MaGIC may produce -1s at the beginning of the file
if first_run:
while size == -1:
size = int(infile.next_line())
if size == -1:
return None
assert size > 0, f"Unexpected size at line {infile.current_line}"
return size
def parse_single_negation(infile: SourceFile, size: int) -> Optional[ModelFunction]:
"""
Parse the line representing the negation table.
"""
return parse_single_monadic_connective(infile, "¬", size)
def mvalue_from_index(i: int) -> ModelValue:
"""
Given an index, return the
representation of the model value.
"""
return ModelValue(f"a{i}")
def parse_mvalue(x: str) -> ModelValue:
"""
Parse an element and return the model value.
"""
return mvalue_from_index(int(x))
def determine_cresult(size: int, ordering: Dict[ModelValue, ModelValue], a: ModelValue, b: ModelValue) -> ModelValue:
"""
Determine what a ∧ b should be given the ordering table.
"""
for i in range(size + 1):
c = mvalue_from_index(i)
if not ordering[(c, a)]:
continue
if not ordering[(c, b)]:
continue
invalid = False
for j in range(size + 1):
d = mvalue_from_index(j)
if c == d:
continue
if ordering[(c, d)]:
if ordering[(d, a)] and ordering [(d, b)]:
invalid = True
if not invalid:
return c
def determine_dresult(size: int, ordering: Dict[ModelValue, ModelValue], a: ModelValue, b: ModelValue) -> ModelValue:
"""
Determine what a b should be given the ordering table.
"""
for i in range(size + 1):
c = mvalue_from_index(i)
if not ordering[(a, c)]:
continue
if not ordering[(b, c)]:
continue
invalid = False
for j in range(size + 1):
d = mvalue_from_index(j)
if d == c:
continue
if ordering[(d, c)]:
if ordering[(a, d)] and ordering[(b, d)]:
invalid = True
if not invalid:
return c
def parse_single_order(infile: SourceFile, size: int) -> Optional[Tuple[ModelFunction, ModelFunction]]:
"""
Parse the line representing the ordering table
"""
line = infile.next_line()
if line == '-1':
return None
table = line.split(" ")
assert len(table) == (size + 1)**2, f"Order table doesn't match expected size at line {infile.current_line}"
omapping = {}
table_i = 0
for i in range(size + 1):
x = mvalue_from_index(i)
for j in range(size + 1):
y = mvalue_from_index(j)
omapping[(x, y)] = table[table_i] == '1'
table_i += 1
cmapping = {}
dmapping = {}
for i in range(size + 1):
x = mvalue_from_index(i)
for j in range(size + 1):
y = mvalue_from_index(j)
cresult = determine_cresult(size, omapping, x, y)
if cresult is None:
print("[Warning] Conjunction and Disjunction are not well-defined")
print(f"{x}{y} = ??")
return None, None
cmapping[(x, y)] = cresult
dresult = determine_dresult(size, omapping, x, y)
if dresult is None:
print("[Warning] Conjunction and Disjunction are not well-defined")
print(f"{x} {y} = ??")
return None, None
dmapping[(x, y)] = dresult
mconjunction = ModelFunction(2, cmapping, "")
mdisjunction = ModelFunction(2, dmapping, "")
return mconjunction, mdisjunction
def parse_single_designated(infile: SourceFile, size: int) -> Optional[Set[ModelValue]]:
"""
Parse the line representing which model values are designated.
"""
line = infile.next_line()
if line == '-1':
return None
row = line.split(" ")
assert len(row) == size + 1, f"Designated table doesn't match expected size at line {infile.current_line}"
designated_values = set()
for i, j in zip(range(size + 1), row):
if j == '1':
x = mvalue_from_index(i)
designated_values.add(x)
return designated_values
def parse_single_implication(infile: SourceFile, size: int) -> Tuple[ModelFunction]:
"""
Take the current string, parse an implication table from it.
"""
return parse_single_dyadic_connective(infile, "", size)
def parse_single_necessitation(infile: SourceFile, size: int) -> Optional[ModelFunction]:
"""
Parse the line representing the necessitation table.
"""
return parse_single_monadic_connective(infile, "!", size)
def parse_single_monadic_connective(infile: SourceFile, symbol: str, size: int) -> Optional[ModelFunction]:
line = infile.next_line()
if line == '-1':
return None
row = line.split(" ")
assert len(row) == size + 1, f"{symbol} table doesn't match size at line {infile.current_line}"
mapping = {}
for i, j in zip(range(size + 1), row):
x = mvalue_from_index(i)
y = parse_mvalue(j)
mapping[(x, )] = y
return ModelFunction(1, mapping, symbol)
def parse_single_dyadic_connective(infile: SourceFile, symbol: str, size: int) -> Optional[ModelFunction]:
try:
first_token = next(infile)
if first_token == "-1":
return None
except StopIteration:
return None
table = []
try:
table = [first_token] + [next(infile) for _ in range((size + 1)**2 - 1)]
except StopIteration:
pass
assert len(table) == (size + 1)**2, f"{symbol} table does not match expected size at line {infile.current_line}"
mapping = {}
table_i = 0
for i in range(size + 1):
x = mvalue_from_index(i)
for j in range(size + 1):
y = mvalue_from_index(j)
r = parse_mvalue(table[table_i])
table_i += 1
mapping[(x, y)] = r
return ModelFunction(2, mapping, symbol)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description="VSP Checker")
parser.add_argument("--verbose", action='store_true', help="Print out all parsed matrices")
args = vars(parser.parse_args())
solutions = parse_matrices(SourceFile(sys.stdin))
print(f"Parsed {len(solutions)} matrices")
num_has_vsp = 0
for i, (model, interpretation) in enumerate(solutions):
vsp_result = has_vsp(model, interpretation)
print(vsp_result)
if args['verbose'] or vsp_result.has_vsp:
print(model)
if vsp_result.has_vsp:
num_has_vsp += 1
print(f"Tested {len(solutions)} models, {num_has_vsp} of which satisfy VSP")