mirror of
https://github.com/Brandon-Rozek/matmod.git
synced 2024-11-22 22:06:29 -05:00
Initial draft of VSP check
This commit is contained in:
parent
39a6bf84fb
commit
e105c4bf5e
4 changed files with 98 additions and 22 deletions
13
R.py
13
R.py
|
@ -11,7 +11,7 @@ from logic import (
|
|||
Disjunction,
|
||||
Rule,
|
||||
)
|
||||
from model import Model, ModelFunction, ModelValue
|
||||
from model import Model, ModelFunction, ModelValue, violates_vsp
|
||||
from generate_model import generate_model
|
||||
|
||||
|
||||
|
@ -71,26 +71,26 @@ a1 = ModelValue("a1")
|
|||
|
||||
carrier_set = {a0, a1}
|
||||
|
||||
mnegation = ModelFunction({
|
||||
mnegation = ModelFunction(1, {
|
||||
a0: a1,
|
||||
a1: a0
|
||||
})
|
||||
|
||||
mimplication = ModelFunction({
|
||||
mimplication = ModelFunction(2, {
|
||||
(a0, a0): a1,
|
||||
(a0, a1): a1,
|
||||
(a1, a0): a0,
|
||||
(a1, a1): a1
|
||||
})
|
||||
|
||||
mconjunction = ModelFunction({
|
||||
mconjunction = ModelFunction(2, {
|
||||
(a0, a0): a0,
|
||||
(a0, a1): a0,
|
||||
(a1, a0): a0,
|
||||
(a1, a1): a1
|
||||
})
|
||||
|
||||
mdisjunction = ModelFunction({
|
||||
mdisjunction = ModelFunction(2, {
|
||||
(a0, a0): a0,
|
||||
(a0, a1): a1,
|
||||
(a1, a0): a1,
|
||||
|
@ -122,3 +122,6 @@ satisfiable_models = generate_model(R_logic, model_size, print_model=True)
|
|||
|
||||
print(f"There are {len(satisfiable_models)} satisfiable models of element length {model_size}")
|
||||
|
||||
for smodel in satisfiable_models:
|
||||
print(violates_vsp(smodel[0], smodel[1]))
|
||||
|
||||
|
|
6
README.md
Normal file
6
README.md
Normal file
|
@ -0,0 +1,6 @@
|
|||
# Matmod: Matrix Model Generator for Implicative Connectives
|
||||
|
||||
This repository is mostly an experiment to help
|
||||
me better understand matrix models.
|
||||
|
||||
You're likely better off using [arranstewart/magic](https://github.com/arranstewart/magic).
|
|
@ -5,7 +5,7 @@ from common import set_to_str
|
|||
from logic import Logic, Operation, Rule, get_operations_from_term, PropositionalVariable
|
||||
from model import ModelValue, Model, satisfiable, ModelFunction, ModelOrderConstraint
|
||||
from itertools import combinations, chain, product
|
||||
from typing import Set
|
||||
from typing import Set, List, Dict, Tuple
|
||||
|
||||
def possible_designations(iterable):
|
||||
"""Powerset without the empty and complete set"""
|
||||
|
@ -23,7 +23,7 @@ def possible_functions(operation, carrier_set):
|
|||
for input, output in zip(inputs, outputs):
|
||||
new_function[input] = output
|
||||
|
||||
yield ModelFunction(new_function, operation.symbol)
|
||||
yield ModelFunction(arity, new_function, operation.symbol)
|
||||
|
||||
|
||||
def only_rules_with(rules: Set[Rule], operation: Operation) -> Set[Rule]:
|
||||
|
@ -86,7 +86,7 @@ def possible_interpretations(
|
|||
interpretation[operation] = function
|
||||
yield interpretation
|
||||
|
||||
def generate_model(logic: Logic, number_elements: int, num_solutions: int = -1, print_model=False):
|
||||
def generate_model(logic: Logic, number_elements: int, num_solutions: int = -1, print_model=False) -> List[Tuple[Model, Dict[Operation, ModelFunction]]]:
|
||||
assert number_elements > 0
|
||||
carrier_set = {
|
||||
ModelValue("a" + str(i)) for i in range(number_elements)
|
||||
|
@ -108,7 +108,7 @@ def generate_model(logic: Logic, number_elements: int, num_solutions: int = -1,
|
|||
|
||||
possible_designated_values = possible_designations(carrier_set)
|
||||
|
||||
satisfied_models = []
|
||||
solutions: List[Tuple[Model, Dict[Operation, ModelFunction]]] = []
|
||||
for designated_values in possible_designated_values:
|
||||
designated_values = set(designated_values)
|
||||
print("Considering models for designated values", set_to_str(designated_values))
|
||||
|
@ -126,11 +126,12 @@ def generate_model(logic: Logic, number_elements: int, num_solutions: int = -1,
|
|||
break
|
||||
|
||||
if is_valid:
|
||||
satisfied_models.append(model)
|
||||
solutions.append((model, interpretation))
|
||||
# satisfied_models.append(model)
|
||||
if print_model:
|
||||
print(model, flush=True)
|
||||
|
||||
if num_solutions >= 0 and len(satisfied_models) >= num_solutions:
|
||||
return satisfied_models
|
||||
if num_solutions >= 0 and len(solutions) >= num_solutions:
|
||||
return solutions
|
||||
|
||||
return satisfied_models
|
||||
return solutions
|
||||
|
|
84
model.py
84
model.py
|
@ -4,11 +4,13 @@ Defining what it means to be a model
|
|||
from common import set_to_str
|
||||
from logic import (
|
||||
PropositionalVariable, get_propostional_variables, Logic, Term,
|
||||
Operation, Conjunction, Disjunction
|
||||
Operation, Conjunction, Disjunction, Implication
|
||||
)
|
||||
from typing import Set, List, Dict, Tuple, Optional
|
||||
from itertools import product
|
||||
from typing import Set, Dict, Tuple, Optional
|
||||
from functools import lru_cache
|
||||
from itertools import combinations, chain, product
|
||||
from copy import deepcopy
|
||||
|
||||
|
||||
__all__ = ['ModelValue', 'ModelFunction', 'Model']
|
||||
|
||||
|
@ -33,17 +35,21 @@ class ModelValue:
|
|||
|
||||
|
||||
class ModelFunction:
|
||||
def __init__(self, mapping, operation_name = ""):
|
||||
def __init__(self, arity: int, mapping, operation_name = ""):
|
||||
self.operation_name = operation_name
|
||||
self.arity = arity
|
||||
|
||||
# Correct input to always be a tuple
|
||||
corrected_mapping = dict()
|
||||
for k, v in mapping.items():
|
||||
if isinstance(k, tuple):
|
||||
assert len(k) == arity
|
||||
corrected_mapping[k] = v
|
||||
elif isinstance(k, list):
|
||||
assert len(k) == arity
|
||||
corrected_mapping[tuple(k)] = v
|
||||
else: # Assume it's atomic
|
||||
assert arity == 1
|
||||
corrected_mapping[(k,)] = v
|
||||
|
||||
self.mapping = corrected_mapping
|
||||
|
@ -188,9 +194,69 @@ def satisfiable(logic: Logic, model: Model, interpretation: Dict[Operation, Mode
|
|||
if consequent_t not in model.designated_values:
|
||||
return False
|
||||
|
||||
# Make sure ordering constraint is met
|
||||
for premise_t in premise_ts:
|
||||
if consequent_t < premise_t in model.ordering:
|
||||
return False
|
||||
|
||||
return True
|
||||
|
||||
|
||||
def model_closure(initial_set: Set[ModelValue], mfunctions: Set[ModelFunction]):
|
||||
last_set: Set[ModelValue] = set()
|
||||
current_set: Set[ModelValue] = initial_set
|
||||
|
||||
while last_set != current_set:
|
||||
last_set = deepcopy(current_set)
|
||||
|
||||
for mfun in mfunctions:
|
||||
# Get output for every possible input configuration
|
||||
# from last_set
|
||||
for args in product(*(last_set for _ in range(mfun.arity))):
|
||||
current_set.add(mfun(*args))
|
||||
|
||||
return current_set
|
||||
|
||||
def violates_vsp(model: Model, interpretation: Dict[Operation, ModelFunction]) -> bool:
|
||||
"""
|
||||
Tells you whether a model violates the
|
||||
variable sharing property.
|
||||
|
||||
If it returns false, it is still possible that
|
||||
the variable sharing property is violated
|
||||
just that we didn't check for the appopriate
|
||||
subalgebras.
|
||||
"""
|
||||
|
||||
impfunction = interpretation[Implication]
|
||||
|
||||
# Compute I the set of tuples (x, y) where
|
||||
# x -> y does not take a designiated value
|
||||
I: Set[Tuple[ModelValue, ModelValue]] = set()
|
||||
|
||||
for (x, y) in product(model.carrier_set, model.carrier_set):
|
||||
if impfunction(x, y) not in model.designated_values:
|
||||
I.add((x, y))
|
||||
|
||||
# Construct the powerset without the empty set
|
||||
s = list(I)
|
||||
I_power = chain.from_iterable(combinations(s, r) for r in range(1, len(s) + 1))
|
||||
# ((x1, y1)), ((x1, y1), (x2, y2)), ...
|
||||
|
||||
for xys in I_power:
|
||||
# Compute the closure of all operations
|
||||
# with just the xs
|
||||
xs = {xy[0] for xy in xys}
|
||||
carrier_set_left: Set[ModelValue] = model_closure(xs, model.logical_operations)
|
||||
|
||||
# Compute the closure of all operations
|
||||
# with just the ys
|
||||
ys = {xy[1] for xy in xys}
|
||||
carrier_set_right: Set[ModelValue] = model_closure(ys, model.logical_operations)
|
||||
|
||||
# If the carrier set intersects, then we violate VSP
|
||||
if len(carrier_set_left & carrier_set_right) > 0:
|
||||
print("FAIL: Carrier sets intersect")
|
||||
return True
|
||||
|
||||
for (x2, y2) in product(carrier_set_left, carrier_set_right):
|
||||
if impfunction(x2, y2) in model.designated_values:
|
||||
print(f"({x2}, {y2}) take on a designated value")
|
||||
return True
|
||||
|
||||
return False
|
||||
|
|
Loading…
Reference in a new issue