Initial draft of VSP check

This commit is contained in:
Brandon Rozek 2024-05-03 13:06:52 -04:00
parent 39a6bf84fb
commit e105c4bf5e
No known key found for this signature in database
GPG key ID: 26E457DA82C9F480
4 changed files with 98 additions and 22 deletions

13
R.py
View file

@ -11,7 +11,7 @@ from logic import (
Disjunction, Disjunction,
Rule, Rule,
) )
from model import Model, ModelFunction, ModelValue from model import Model, ModelFunction, ModelValue, violates_vsp
from generate_model import generate_model from generate_model import generate_model
@ -71,26 +71,26 @@ a1 = ModelValue("a1")
carrier_set = {a0, a1} carrier_set = {a0, a1}
mnegation = ModelFunction({ mnegation = ModelFunction(1, {
a0: a1, a0: a1,
a1: a0 a1: a0
}) })
mimplication = ModelFunction({ mimplication = ModelFunction(2, {
(a0, a0): a1, (a0, a0): a1,
(a0, a1): a1, (a0, a1): a1,
(a1, a0): a0, (a1, a0): a0,
(a1, a1): a1 (a1, a1): a1
}) })
mconjunction = ModelFunction({ mconjunction = ModelFunction(2, {
(a0, a0): a0, (a0, a0): a0,
(a0, a1): a0, (a0, a1): a0,
(a1, a0): a0, (a1, a0): a0,
(a1, a1): a1 (a1, a1): a1
}) })
mdisjunction = ModelFunction({ mdisjunction = ModelFunction(2, {
(a0, a0): a0, (a0, a0): a0,
(a0, a1): a1, (a0, a1): a1,
(a1, a0): a1, (a1, a0): a1,
@ -122,3 +122,6 @@ satisfiable_models = generate_model(R_logic, model_size, print_model=True)
print(f"There are {len(satisfiable_models)} satisfiable models of element length {model_size}") print(f"There are {len(satisfiable_models)} satisfiable models of element length {model_size}")
for smodel in satisfiable_models:
print(violates_vsp(smodel[0], smodel[1]))

6
README.md Normal file
View file

@ -0,0 +1,6 @@
# Matmod: Matrix Model Generator for Implicative Connectives
This repository is mostly an experiment to help
me better understand matrix models.
You're likely better off using [arranstewart/magic](https://github.com/arranstewart/magic).

View file

@ -5,7 +5,7 @@ from common import set_to_str
from logic import Logic, Operation, Rule, get_operations_from_term, PropositionalVariable from logic import Logic, Operation, Rule, get_operations_from_term, PropositionalVariable
from model import ModelValue, Model, satisfiable, ModelFunction, ModelOrderConstraint from model import ModelValue, Model, satisfiable, ModelFunction, ModelOrderConstraint
from itertools import combinations, chain, product from itertools import combinations, chain, product
from typing import Set from typing import Set, List, Dict, Tuple
def possible_designations(iterable): def possible_designations(iterable):
"""Powerset without the empty and complete set""" """Powerset without the empty and complete set"""
@ -23,7 +23,7 @@ def possible_functions(operation, carrier_set):
for input, output in zip(inputs, outputs): for input, output in zip(inputs, outputs):
new_function[input] = output new_function[input] = output
yield ModelFunction(new_function, operation.symbol) yield ModelFunction(arity, new_function, operation.symbol)
def only_rules_with(rules: Set[Rule], operation: Operation) -> Set[Rule]: def only_rules_with(rules: Set[Rule], operation: Operation) -> Set[Rule]:
@ -86,7 +86,7 @@ def possible_interpretations(
interpretation[operation] = function interpretation[operation] = function
yield interpretation yield interpretation
def generate_model(logic: Logic, number_elements: int, num_solutions: int = -1, print_model=False): def generate_model(logic: Logic, number_elements: int, num_solutions: int = -1, print_model=False) -> List[Tuple[Model, Dict[Operation, ModelFunction]]]:
assert number_elements > 0 assert number_elements > 0
carrier_set = { carrier_set = {
ModelValue("a" + str(i)) for i in range(number_elements) ModelValue("a" + str(i)) for i in range(number_elements)
@ -108,7 +108,7 @@ def generate_model(logic: Logic, number_elements: int, num_solutions: int = -1,
possible_designated_values = possible_designations(carrier_set) possible_designated_values = possible_designations(carrier_set)
satisfied_models = [] solutions: List[Tuple[Model, Dict[Operation, ModelFunction]]] = []
for designated_values in possible_designated_values: for designated_values in possible_designated_values:
designated_values = set(designated_values) designated_values = set(designated_values)
print("Considering models for designated values", set_to_str(designated_values)) print("Considering models for designated values", set_to_str(designated_values))
@ -126,11 +126,12 @@ def generate_model(logic: Logic, number_elements: int, num_solutions: int = -1,
break break
if is_valid: if is_valid:
satisfied_models.append(model) solutions.append((model, interpretation))
# satisfied_models.append(model)
if print_model: if print_model:
print(model, flush=True) print(model, flush=True)
if num_solutions >= 0 and len(satisfied_models) >= num_solutions: if num_solutions >= 0 and len(solutions) >= num_solutions:
return satisfied_models return solutions
return satisfied_models return solutions

View file

@ -4,11 +4,13 @@ Defining what it means to be a model
from common import set_to_str from common import set_to_str
from logic import ( from logic import (
PropositionalVariable, get_propostional_variables, Logic, Term, PropositionalVariable, get_propostional_variables, Logic, Term,
Operation, Conjunction, Disjunction Operation, Conjunction, Disjunction, Implication
) )
from typing import Set, List, Dict, Tuple, Optional from typing import Set, Dict, Tuple, Optional
from itertools import product
from functools import lru_cache from functools import lru_cache
from itertools import combinations, chain, product
from copy import deepcopy
__all__ = ['ModelValue', 'ModelFunction', 'Model'] __all__ = ['ModelValue', 'ModelFunction', 'Model']
@ -33,17 +35,21 @@ class ModelValue:
class ModelFunction: class ModelFunction:
def __init__(self, mapping, operation_name = ""): def __init__(self, arity: int, mapping, operation_name = ""):
self.operation_name = operation_name self.operation_name = operation_name
self.arity = arity
# Correct input to always be a tuple # Correct input to always be a tuple
corrected_mapping = dict() corrected_mapping = dict()
for k, v in mapping.items(): for k, v in mapping.items():
if isinstance(k, tuple): if isinstance(k, tuple):
assert len(k) == arity
corrected_mapping[k] = v corrected_mapping[k] = v
elif isinstance(k, list): elif isinstance(k, list):
assert len(k) == arity
corrected_mapping[tuple(k)] = v corrected_mapping[tuple(k)] = v
else: # Assume it's atomic else: # Assume it's atomic
assert arity == 1
corrected_mapping[(k,)] = v corrected_mapping[(k,)] = v
self.mapping = corrected_mapping self.mapping = corrected_mapping
@ -188,9 +194,69 @@ def satisfiable(logic: Logic, model: Model, interpretation: Dict[Operation, Mode
if consequent_t not in model.designated_values: if consequent_t not in model.designated_values:
return False return False
# Make sure ordering constraint is met
for premise_t in premise_ts:
if consequent_t < premise_t in model.ordering:
return False
return True return True
def model_closure(initial_set: Set[ModelValue], mfunctions: Set[ModelFunction]):
last_set: Set[ModelValue] = set()
current_set: Set[ModelValue] = initial_set
while last_set != current_set:
last_set = deepcopy(current_set)
for mfun in mfunctions:
# Get output for every possible input configuration
# from last_set
for args in product(*(last_set for _ in range(mfun.arity))):
current_set.add(mfun(*args))
return current_set
def violates_vsp(model: Model, interpretation: Dict[Operation, ModelFunction]) -> bool:
"""
Tells you whether a model violates the
variable sharing property.
If it returns false, it is still possible that
the variable sharing property is violated
just that we didn't check for the appopriate
subalgebras.
"""
impfunction = interpretation[Implication]
# Compute I the set of tuples (x, y) where
# x -> y does not take a designiated value
I: Set[Tuple[ModelValue, ModelValue]] = set()
for (x, y) in product(model.carrier_set, model.carrier_set):
if impfunction(x, y) not in model.designated_values:
I.add((x, y))
# Construct the powerset without the empty set
s = list(I)
I_power = chain.from_iterable(combinations(s, r) for r in range(1, len(s) + 1))
# ((x1, y1)), ((x1, y1), (x2, y2)), ...
for xys in I_power:
# Compute the closure of all operations
# with just the xs
xs = {xy[0] for xy in xys}
carrier_set_left: Set[ModelValue] = model_closure(xs, model.logical_operations)
# Compute the closure of all operations
# with just the ys
ys = {xy[1] for xy in xys}
carrier_set_right: Set[ModelValue] = model_closure(ys, model.logical_operations)
# If the carrier set intersects, then we violate VSP
if len(carrier_set_left & carrier_set_right) > 0:
print("FAIL: Carrier sets intersect")
return True
for (x2, y2) in product(carrier_set_left, carrier_set_right):
if impfunction(x2, y2) in model.designated_values:
print(f"({x2}, {y2}) take on a designated value")
return True
return False