mirror of
https://github.com/Brandon-Rozek/matmod.git
synced 2025-01-04 23:02:48 +00:00
Check for top and bottom within subalgebra
This commit is contained in:
parent
3b535fdfa5
commit
bed3d09f4a
1 changed files with 30 additions and 19 deletions
49
vsp.py
49
vsp.py
|
@ -38,31 +38,38 @@ def preseed(
|
|||
same_set = candidate_preseed[1] == 0
|
||||
return candidate_preseed[0], same_set
|
||||
|
||||
def has_top_bottom(subalgebra: Set[ModelValue], mconjunction: Optional[ModelFunction], mdisjunction: Optional[ModelFunction]):
|
||||
|
||||
def find_top(algebra: Set[ModelValue], mconjunction: Optional[ModelFunction], mdisjunction: Optional[ModelFunction]) -> Optional[ModelValue]:
|
||||
"""
|
||||
Checks the subalgebra to see whether it
|
||||
contains a top or bottom element.
|
||||
|
||||
Note: This does not compute the closure.
|
||||
|
||||
By definition,
|
||||
The top element is any element x where x || x = x
|
||||
The bottom element is any element x where x && x = x
|
||||
Find the top of the order lattice.
|
||||
T || a = T, T && a = a for all a in the carrier set
|
||||
"""
|
||||
if mconjunction is None or mdisjunction is None:
|
||||
return False
|
||||
return None
|
||||
|
||||
for x in subalgebra:
|
||||
if mconjunction(x, x) == x:
|
||||
# print("Bottom Element Found")
|
||||
return True
|
||||
for x in algebra:
|
||||
for y in algebra:
|
||||
if mdisjunction(x, y) == x and mconjunction(x, y) == y:
|
||||
return x
|
||||
|
||||
if mdisjunction(x, x) == x:
|
||||
# print("Top Element Found")
|
||||
return True
|
||||
print("[Warning] Failed to find the top of the lattice")
|
||||
return None
|
||||
|
||||
return False
|
||||
def find_bottom(algebra: Set[ModelValue], mconjunction: Optional[ModelFunction], mdisjunction: Optional[ModelFunction]) -> Optional[ModelValue]:
|
||||
"""
|
||||
Find the bottom of the order lattice
|
||||
F || a = a, F && a = F for all a in the carrier set
|
||||
"""
|
||||
if mconjunction is None or mdisjunction is None:
|
||||
return None
|
||||
|
||||
for x in algebra:
|
||||
for y in algebra:
|
||||
if mdisjunction(x, y) == y and mconjunction(x, y) == x:
|
||||
return x
|
||||
|
||||
print("[Warning] Failed to find the bottom of the lattice")
|
||||
return None
|
||||
|
||||
|
||||
class VSP_Result:
|
||||
|
@ -91,6 +98,8 @@ def has_vsp(model: Model, interpretation: Dict[Operation, ModelFunction]) -> VSP
|
|||
impfunction = interpretation[Implication]
|
||||
mconjunction = interpretation.get(Conjunction)
|
||||
mdisjunction = interpretation.get(Disjunction)
|
||||
top = find_top(model.carrier_set, mconjunction, mdisjunction)
|
||||
bottom = find_bottom(model.carrier_set, mconjunction, mdisjunction)
|
||||
|
||||
# Compute I the set of tuples (x, y) where
|
||||
# x -> y does not take a designiated value
|
||||
|
@ -133,7 +142,9 @@ def has_vsp(model: Model, interpretation: Dict[Operation, ModelFunction]) -> VSP
|
|||
# NOTE: Optimization
|
||||
# if either subalgebra contains top or bottom, move
|
||||
# onto the next pair
|
||||
if has_top_bottom(xs, mconjunction, mdisjunction) or has_top_bottom(ys, mconjunction, mdisjunction):
|
||||
if top is not None and (top in xs or top in ys):
|
||||
continue
|
||||
if bottom is not None and (bottom in xs or bottom in ys):
|
||||
continue
|
||||
|
||||
# Compute the closure of all operations
|
||||
|
|
Loading…
Reference in a new issue