Introduced ordering at model level...

This commit is contained in:
Brandon Rozek 2024-04-21 12:15:24 -04:00
parent 20ccacc166
commit ae8658fda2
No known key found for this signature in database
GPG key ID: 26E457DA82C9F480
2 changed files with 67 additions and 22 deletions

View file

@ -46,7 +46,6 @@ def only_rules_with(rules: Set[Rule], operation: Operation) -> Set[Rule]:
return result_rules return result_rules
def possible_interpretations( def possible_interpretations(
logic: Logic, carrier_set: Set[ModelValue], logic: Logic, carrier_set: Set[ModelValue],
designated_values: Set[ModelValue]): designated_values: Set[ModelValue]):
@ -88,10 +87,25 @@ def possible_interpretations(
yield interpretation yield interpretation
def generate_model(logic: Logic, number_elements: int, num_solutions: int = -1, print_model=False): def generate_model(logic: Logic, number_elements: int, num_solutions: int = -1, print_model=False):
assert number_elements > 0
carrier_set = { carrier_set = {
ModelValue("a" + str(i)) for i in range(number_elements) ModelValue("a" + str(i)) for i in range(number_elements)
} }
ordering = set()
# a(0) is less than all other elements
a0 = ModelValue("a0")
for v in carrier_set:
if v != a0:
ordering.add(a0 < v)
# Every other element is less than a(n - 1)
an = ModelValue(f"a{number_elements-1}")
for v in carrier_set:
if an != v:
ordering.add(v < an)
possible_designated_values = possible_designations(carrier_set) possible_designated_values = possible_designations(carrier_set)
satisfied_models = [] satisfied_models = []
@ -102,7 +116,7 @@ def generate_model(logic: Logic, number_elements: int, num_solutions: int = -1,
for interpretation in possible_interps: for interpretation in possible_interps:
is_valid = True is_valid = True
model = Model(carrier_set, set(interpretation.values()), designated_values) model = Model(carrier_set, set(interpretation.values()), designated_values, ordering)
# Iteratively test possible interpretations # Iteratively test possible interpretations
# by adding one axiom at a time # by adding one axiom at a time
for rule in logic.rules: for rule in logic.rules:

View file

@ -6,7 +6,7 @@ from logic import (
PropositionalVariable, get_propostional_variables, Logic, Term, PropositionalVariable, get_propostional_variables, Logic, Term,
Operation Operation
) )
from typing import Set, List, Dict, Tuple from typing import Set, List, Dict, Tuple, Optional
from itertools import product from itertools import product
from functools import lru_cache from functools import lru_cache
@ -27,6 +27,9 @@ class ModelValue:
return self.hashed_value return self.hashed_value
def __eq__(self, other): def __eq__(self, other):
return isinstance(other, ModelValue) and self.name == other.name return isinstance(other, ModelValue) and self.name == other.name
def __lt__(self, other):
assert isinstance(other, ModelValue)
return ModelOrderConstraint(self, other)
class ModelFunction: class ModelFunction:
@ -58,17 +61,32 @@ class ModelFunction:
# def __eq__(self, other): # def __eq__(self, other):
# return isinstance(other, ModelFunction) and self.name == other.name and self.arity == other.arity # return isinstance(other, ModelFunction) and self.name == other.name and self.arity == other.arity
class ModelOrderConstraint:
# a < b
def __init__(self, a: ModelValue, b: ModelValue):
self.a = a
self.b = b
def __hash__(self):
return hash(self.a) * hash(self.b)
def __eq__(self, other):
return isinstance(other, ModelOrderConstraint) and \
self.a == other.a and self.b == other.b
class Model: class Model:
def __init__( def __init__(
self, self,
carrier_set: Set[ModelValue], carrier_set: Set[ModelValue],
logical_operations: Set[ModelFunction], logical_operations: Set[ModelFunction],
designated_values: Set[ModelValue] designated_values: Set[ModelValue],
ordering: Optional[Set[ModelOrderConstraint]] = None
): ):
assert designated_values <= carrier_set assert designated_values <= carrier_set
self.carrier_set = carrier_set self.carrier_set = carrier_set
self.logical_operations = logical_operations self.logical_operations = logical_operations
self.designated_values = designated_values self.designated_values = designated_values
self.ordering = ordering if ordering is not None else set()
# TODO: Make sure ordering is "valid"
# That is: transitive, etc.
def __str__(self): def __str__(self):
result = f"""Carrier Set: {set_to_str(self.carrier_set)} result = f"""Carrier Set: {set_to_str(self.carrier_set)}
@ -116,20 +134,33 @@ def satisfiable(logic: Logic, model: Model, interpretation: Dict[Operation, Mode
pvars = tuple(get_propostional_variables(tuple(logic.rules))) pvars = tuple(get_propostional_variables(tuple(logic.rules)))
mappings = all_model_valuations_cached(pvars, tuple(model.carrier_set)) mappings = all_model_valuations_cached(pvars, tuple(model.carrier_set))
"""
TODO: Make sure that ordering for conjunction and disjunction
at the model function level.
"""
for mapping in mappings: for mapping in mappings:
for rule in logic.rules: for rule in logic.rules:
premise_met = True premise_met = True
premise_ts = set()
for premise in rule.premises: for premise in rule.premises:
t = evaluate_term(premise, mapping, interpretation) premise_t = evaluate_term(premise, mapping, interpretation)
if t not in model.designated_values: if premise_t not in model.designated_values:
premise_met = False premise_met = False
break break
premise_ts.add(premise_t)
if not premise_met: if not premise_met:
continue continue
t = evaluate_term(rule.conclusion, mapping, interpretation) consequent_t = evaluate_term(rule.conclusion, mapping, interpretation)
if t not in model.designated_values:
if consequent_t not in model.designated_values:
return False
# Make sure ordering constraint is met
for premise_t in premise_ts:
if consequent_t < premise_t in model.ordering:
return False return False
return True return True