mirror of
https://github.com/Brandon-Rozek/matmod.git
synced 2024-11-22 22:06:29 -05:00
Discard subalgebras with bottom/top
This commit is contained in:
commit
8628107704
2 changed files with 95 additions and 6 deletions
36
model.py
36
model.py
|
@ -219,15 +219,18 @@ def satisfiable(logic: Logic, model: Model, interpretation: Dict[Operation, Mode
|
|||
|
||||
|
||||
|
||||
def model_closure(initial_set: Set[ModelValue], mfunctions: Set[ModelFunction]):
|
||||
def model_closure(initial_set: Set[ModelValue], mfunctions: Set[ModelFunction], top: Optional[ModelValue], bottom: Optional[ModelValue]) -> Set[ModelValue]:
|
||||
"""
|
||||
Given an initial set of model values and a set of model functions,
|
||||
compute the complete set of model values that are closed
|
||||
under the operations.
|
||||
|
||||
If top or bottom is encountered, then we end the saturation procedure early.
|
||||
"""
|
||||
closure_set: Set[ModelValue] = initial_set
|
||||
last_new: Set[ModelValue] = initial_set
|
||||
changed: bool = True
|
||||
topbottom_found = False
|
||||
|
||||
while changed:
|
||||
changed = False
|
||||
|
@ -251,6 +254,18 @@ def model_closure(initial_set: Set[ModelValue], mfunctions: Set[ModelFunction]):
|
|||
if element not in closure_set:
|
||||
new_elements.add(element)
|
||||
|
||||
# Optimization: Break out of computation
|
||||
# early when top or bottom element is foun
|
||||
if top is not None and element == top:
|
||||
topbottom_found = True
|
||||
if bottom is not None and element == bottom:
|
||||
topbottom_found = True
|
||||
if topbottom_found:
|
||||
break
|
||||
|
||||
if topbottom_found:
|
||||
break
|
||||
|
||||
# We don't need to compute the arguments
|
||||
# thanks to the cache, so move onto the
|
||||
# next function.
|
||||
|
@ -274,8 +289,27 @@ def model_closure(initial_set: Set[ModelValue], mfunctions: Set[ModelFunction]):
|
|||
if element not in closure_set:
|
||||
new_elements.add(element)
|
||||
|
||||
# Optimization: Break out of computation
|
||||
# early when top or bottom element is foun
|
||||
if top is not None and element == top:
|
||||
topbottom_found = True
|
||||
if bottom is not None and element == bottom:
|
||||
topbottom_found = True
|
||||
if topbottom_found:
|
||||
break
|
||||
|
||||
if topbottom_found:
|
||||
break
|
||||
|
||||
if topbottom_found:
|
||||
break
|
||||
|
||||
|
||||
closure_set.update(new_elements)
|
||||
changed = len(new_elements) > 0
|
||||
last_new = new_elements
|
||||
|
||||
if topbottom_found:
|
||||
break
|
||||
|
||||
return closure_set
|
||||
|
|
65
vsp.py
65
vsp.py
|
@ -8,7 +8,7 @@ from common import set_to_str
|
|||
from model import (
|
||||
Model, model_closure, ModelFunction, ModelValue
|
||||
)
|
||||
from logic import Implication, Operation
|
||||
from logic import Conjunction, Disjunction, Implication, Operation
|
||||
|
||||
def preseed(
|
||||
initial_set: Set[ModelValue],
|
||||
|
@ -38,6 +38,40 @@ def preseed(
|
|||
same_set = candidate_preseed[1] == 0
|
||||
return candidate_preseed[0], same_set
|
||||
|
||||
|
||||
def find_top(algebra: Set[ModelValue], mconjunction: Optional[ModelFunction], mdisjunction: Optional[ModelFunction]) -> Optional[ModelValue]:
|
||||
"""
|
||||
Find the top of the order lattice.
|
||||
T || a = T, T && a = a for all a in the carrier set
|
||||
"""
|
||||
if mconjunction is None or mdisjunction is None:
|
||||
return None
|
||||
|
||||
for x in algebra:
|
||||
for y in algebra:
|
||||
if mdisjunction(x, y) == x and mconjunction(x, y) == y:
|
||||
return x
|
||||
|
||||
print("[Warning] Failed to find the top of the lattice")
|
||||
return None
|
||||
|
||||
def find_bottom(algebra: Set[ModelValue], mconjunction: Optional[ModelFunction], mdisjunction: Optional[ModelFunction]) -> Optional[ModelValue]:
|
||||
"""
|
||||
Find the bottom of the order lattice
|
||||
F || a = a, F && a = F for all a in the carrier set
|
||||
"""
|
||||
if mconjunction is None or mdisjunction is None:
|
||||
return None
|
||||
|
||||
for x in algebra:
|
||||
for y in algebra:
|
||||
if mdisjunction(x, y) == y and mconjunction(x, y) == x:
|
||||
return x
|
||||
|
||||
print("[Warning] Failed to find the bottom of the lattice")
|
||||
return None
|
||||
|
||||
|
||||
class VSP_Result:
|
||||
def __init__(
|
||||
self, has_vsp: bool, model_name: Optional[str] = None,
|
||||
|
@ -62,6 +96,10 @@ def has_vsp(model: Model, interpretation: Dict[Operation, ModelFunction]) -> VSP
|
|||
sharing property.
|
||||
"""
|
||||
impfunction = interpretation[Implication]
|
||||
mconjunction = interpretation.get(Conjunction)
|
||||
mdisjunction = interpretation.get(Disjunction)
|
||||
top = find_top(model.carrier_set, mconjunction, mdisjunction)
|
||||
bottom = find_bottom(model.carrier_set, mconjunction, mdisjunction)
|
||||
|
||||
# NOTE: No models with only one designated
|
||||
# value satisfies VSP
|
||||
|
@ -101,28 +139,45 @@ def has_vsp(model: Model, interpretation: Dict[Operation, ModelFunction]) -> VSP
|
|||
|
||||
|
||||
# NOTE: Optimziation before model_closure
|
||||
# If the carrier set intersects, then move on to the next
|
||||
# subalgebra
|
||||
# If the two subalgebras intersect, move
|
||||
# onto the next pair
|
||||
if len(xs & ys) > 0:
|
||||
continue
|
||||
|
||||
# NOTE: Optimization
|
||||
# if either subalgebra contains top or bottom, move
|
||||
# onto the next pair
|
||||
if top is not None and (top in xs or top in ys):
|
||||
continue
|
||||
if bottom is not None and (bottom in xs or bottom in ys):
|
||||
continue
|
||||
|
||||
# Compute the closure of all operations
|
||||
# with just the xs
|
||||
carrier_set_left: Set[ModelValue] = model_closure(xs, model.logical_operations)
|
||||
carrier_set_left: Set[ModelValue] = model_closure(xs, model.logical_operations, top, bottom)
|
||||
|
||||
# Save to cache
|
||||
if cached_xs[0] is not None and not cached_ys[1]:
|
||||
closure_cache.append((orig_xs, carrier_set_left))
|
||||
|
||||
if top is not None and top in carrier_set_left:
|
||||
continue
|
||||
if bottom is not None and bottom in carrier_set_left:
|
||||
continue
|
||||
|
||||
|
||||
# Compute the closure of all operations
|
||||
# with just the ys
|
||||
carrier_set_right: Set[ModelValue] = model_closure(ys, model.logical_operations)
|
||||
carrier_set_right: Set[ModelValue] = model_closure(ys, model.logical_operations, top, bottom)
|
||||
|
||||
# Save to cache
|
||||
if cached_ys[0] is not None and not cached_ys[1]:
|
||||
closure_cache.append((orig_ys, carrier_set_right))
|
||||
|
||||
if top is not None and top in carrier_set_right:
|
||||
continue
|
||||
if bottom is not None and bottom in carrier_set_right:
|
||||
continue
|
||||
|
||||
# If the carrier set intersects, then move on to the next
|
||||
# subalgebra
|
||||
|
|
Loading…
Reference in a new issue