mirror of
https://github.com/Brandon-Rozek/matmod.git
synced 2024-11-08 21:20:33 -05:00
Code cleanup
This commit is contained in:
parent
6b4d5828c8
commit
6bb863da97
3 changed files with 57 additions and 33 deletions
|
@ -1,9 +1,13 @@
|
|||
"""
|
||||
File which generates all the models
|
||||
Generate all the models for a given logic
|
||||
with a specified number of elements.
|
||||
"""
|
||||
from common import set_to_str
|
||||
from logic import Logic, Operation, Rule, get_operations_from_term
|
||||
from model import ModelValue, Model, satisfiable, ModelFunction, ModelOrderConstraint
|
||||
from model import (
|
||||
Interpretation, ModelValue, Model,
|
||||
satisfiable, ModelFunction
|
||||
)
|
||||
from itertools import combinations, chain, product
|
||||
from typing import Set, List, Dict, Tuple
|
||||
|
||||
|
@ -13,6 +17,11 @@ def possible_designations(iterable):
|
|||
return chain.from_iterable(combinations(s, r) for r in range(1, len(s)))
|
||||
|
||||
def possible_functions(operation, carrier_set):
|
||||
"""
|
||||
Create every possible input, output pair
|
||||
for a given model function based on an
|
||||
operation and a carrier set.
|
||||
"""
|
||||
arity = operation.arity
|
||||
|
||||
inputs = list(product(carrier_set, repeat=arity))
|
||||
|
@ -26,12 +35,19 @@ def possible_functions(operation, carrier_set):
|
|||
yield ModelFunction(arity, new_function, operation.symbol)
|
||||
|
||||
|
||||
def only_rules_with(rules: Set[Rule], operation: Operation) -> Set[Rule]:
|
||||
result_rules = []
|
||||
def only_rules_with(rules: Set[Rule], operation: Operation) -> List[Rule]:
|
||||
"""
|
||||
Filter the list of rules in a logic to those
|
||||
that only contain the logical operation specified.
|
||||
"""
|
||||
result_rules: List[Rule] = []
|
||||
for rule in rules:
|
||||
is_valid = True
|
||||
# Go through every term in the premises and conclusion
|
||||
for t in (rule.premises | {rule.conclusion,}):
|
||||
t_operations = get_operations_from_term(t)
|
||||
# Make sure there's only one operation
|
||||
# and that it matches the operation specified
|
||||
if len(t_operations) > 1:
|
||||
is_valid = False
|
||||
break
|
||||
|
@ -48,23 +64,32 @@ def only_rules_with(rules: Set[Rule], operation: Operation) -> Set[Rule]:
|
|||
|
||||
def possible_interpretations(
|
||||
logic: Logic, carrier_set: Set[ModelValue],
|
||||
designated_values: Set[ModelValue], ordering: Set[ModelOrderConstraint]):
|
||||
operations = []
|
||||
model_functions = []
|
||||
designated_values: Set[ModelValue]):
|
||||
"""
|
||||
Consider every possible interpretation of operations
|
||||
within the specified logic given the carrier set of
|
||||
model values, and the set of designated values.
|
||||
"""
|
||||
operations: List[Operation] = []
|
||||
model_functions: List[List[ModelFunction]] = []
|
||||
|
||||
for operation in logic.operations:
|
||||
operations.append(operation)
|
||||
candidate_functions = list(possible_functions(operation, carrier_set))
|
||||
passed_functions = []
|
||||
passed_functions: List[ModelFunction] = []
|
||||
"""
|
||||
Only consider functions that at least pass
|
||||
in the rules with the operation by itself.
|
||||
Discard candidate functions that don't pass
|
||||
the rules that only contain the given
|
||||
logical operation.
|
||||
"""
|
||||
restricted_rules = only_rules_with(logic.rules, operation)
|
||||
if len(restricted_rules) > 0:
|
||||
small_logic = Logic({operation,}, restricted_rules)
|
||||
# Add candidate functions whose small model
|
||||
# and logic are satisfied given the restricted
|
||||
# rule set.
|
||||
for f in candidate_functions:
|
||||
small_model = Model(carrier_set, {f,}, designated_values, ordering)
|
||||
small_model = Model(carrier_set, {f,}, designated_values)
|
||||
interp = {operation: f}
|
||||
if satisfiable(small_logic, small_model, interp):
|
||||
passed_functions.append(f)
|
||||
|
@ -78,45 +103,42 @@ def possible_interpretations(
|
|||
)
|
||||
model_functions.append(passed_functions)
|
||||
|
||||
# The model_functions variables contains
|
||||
# the candidate functions for each operation.
|
||||
|
||||
functions_choice = product(*model_functions)
|
||||
# Assign a function to each operation
|
||||
for functions in functions_choice:
|
||||
assert len(operations) == len(functions)
|
||||
interpretation = dict()
|
||||
interpretation: Interpretation = dict()
|
||||
for operation, function in zip(operations, functions):
|
||||
interpretation[operation] = function
|
||||
yield interpretation
|
||||
|
||||
def generate_model(logic: Logic, number_elements: int, num_solutions: int = -1, print_model=False) -> List[Tuple[Model, Dict[Operation, ModelFunction]]]:
|
||||
def generate_model(
|
||||
logic: Logic, number_elements: int, num_solutions: int = -1,
|
||||
print_model=False) -> List[Tuple[Model, Interpretation]]:
|
||||
"""
|
||||
Generate the specified number of models that
|
||||
satisfy a logic of a certain size.
|
||||
"""
|
||||
assert number_elements > 0
|
||||
carrier_set = {
|
||||
ModelValue("a" + str(i)) for i in range(number_elements)
|
||||
}
|
||||
|
||||
ordering = set()
|
||||
|
||||
# a(0) is less than all other elements
|
||||
a0 = ModelValue("a0")
|
||||
for v in carrier_set:
|
||||
if v != a0:
|
||||
ordering.add(a0 < v)
|
||||
|
||||
# Every other element is less than a(n - 1)
|
||||
an = ModelValue(f"a{number_elements-1}")
|
||||
for v in carrier_set:
|
||||
if an != v:
|
||||
ordering.add(v < an)
|
||||
|
||||
possible_designated_values = possible_designations(carrier_set)
|
||||
|
||||
solutions: List[Tuple[Model, Dict[Operation, ModelFunction]]] = []
|
||||
solutions: List[Tuple[Model, Interpretation]] = []
|
||||
|
||||
for designated_values in possible_designated_values:
|
||||
designated_values = set(designated_values)
|
||||
print("Considering models for designated values", set_to_str(designated_values))
|
||||
possible_interps = possible_interpretations(logic, carrier_set, designated_values, ordering)
|
||||
|
||||
possible_interps = possible_interpretations(logic, carrier_set, designated_values)
|
||||
for interpretation in possible_interps:
|
||||
is_valid = True
|
||||
model = Model(carrier_set, set(interpretation.values()), designated_values, ordering)
|
||||
model = Model(carrier_set, set(interpretation.values()), designated_values)
|
||||
# Iteratively test possible interpretations
|
||||
# by adding one axiom at a time
|
||||
for rule in logic.rules:
|
||||
|
@ -127,7 +149,6 @@ def generate_model(logic: Logic, number_elements: int, num_solutions: int = -1,
|
|||
|
||||
if is_valid:
|
||||
solutions.append((model, interpretation))
|
||||
# satisfied_models.append(model)
|
||||
if print_model:
|
||||
print(model, flush=True)
|
||||
|
||||
|
|
2
logic.py
2
logic.py
|
@ -1,4 +1,4 @@
|
|||
from typing import Any, Set, Tuple
|
||||
from typing import Set, Tuple
|
||||
from functools import lru_cache
|
||||
|
||||
class Operation:
|
||||
|
|
5
model.py
5
model.py
|
@ -13,7 +13,8 @@ from itertools import combinations_with_replacement, permutations, product
|
|||
from typing import Dict, List, Set, Tuple
|
||||
|
||||
|
||||
__all__ = ['ModelValue', 'ModelFunction', 'Model']
|
||||
__all__ = ['ModelValue', 'ModelFunction', 'Model', 'Interpretation']
|
||||
|
||||
|
||||
class ModelValue:
|
||||
def __init__(self, name):
|
||||
|
@ -63,6 +64,8 @@ class ModelFunction:
|
|||
def __call__(self, *args):
|
||||
return self.mapping[args]
|
||||
|
||||
Interpretation = Dict[Operation, ModelFunction]
|
||||
|
||||
class Model:
|
||||
def __init__(
|
||||
self,
|
||||
|
|
Loading…
Reference in a new issue