mirror of
https://github.com/Brandon-Rozek/matmod.git
synced 2024-12-11 16:27:07 -05:00
Updates
- Parses multiple implication tables from magic - Speed improvements to model closure - Make use of prior model_closure computations
This commit is contained in:
parent
cf636eb7fd
commit
2fa8aa9c15
3 changed files with 187 additions and 92 deletions
93
model.py
93
model.py
|
@ -8,7 +8,7 @@ Operation, Conjunction, Disjunction, Implication
|
|||
)
|
||||
from typing import Set, Dict, Tuple, Optional
|
||||
from functools import lru_cache
|
||||
from itertools import combinations, chain, product
|
||||
from itertools import combinations, chain, product, permutations
|
||||
from copy import deepcopy
|
||||
|
||||
|
||||
|
@ -32,6 +32,8 @@ class ModelValue:
|
|||
def __lt__(self, other):
|
||||
assert isinstance(other, ModelValue)
|
||||
return ModelOrderConstraint(self, other)
|
||||
def __deepcopy__(self, memo):
|
||||
return ModelValue(self.name)
|
||||
|
||||
|
||||
class ModelFunction:
|
||||
|
@ -195,66 +197,47 @@ def satisfiable(logic: Logic, model: Model, interpretation: Dict[Operation, Mode
|
|||
|
||||
return True
|
||||
|
||||
from itertools import combinations_with_replacement
|
||||
from collections import defaultdict
|
||||
|
||||
def model_closure(initial_set: Set[ModelValue], mfunctions: Set[ModelFunction]):
|
||||
last_set: Set[ModelValue] = set()
|
||||
current_set: Set[ModelValue] = initial_set
|
||||
closure_set: Set[ModelValue] = initial_set
|
||||
last_new = initial_set
|
||||
changed = True
|
||||
|
||||
while last_set != current_set:
|
||||
last_set = deepcopy(current_set)
|
||||
while changed:
|
||||
changed = False
|
||||
new_elements = set()
|
||||
old_closure = closure_set - last_new
|
||||
|
||||
# arity -> args
|
||||
cached_args = defaultdict(list)
|
||||
|
||||
for mfun in mfunctions:
|
||||
# Get output for every possible input configuration
|
||||
# from last_set
|
||||
for args in product(last_set, repeat=mfun.arity):
|
||||
current_set.add(mfun(*args))
|
||||
|
||||
return current_set
|
||||
# Use cached args if this arity was looked at before
|
||||
if mfun.arity in cached_args:
|
||||
for args in cached_args[mfun.arity]:
|
||||
element = mfun(*args)
|
||||
if element not in closure_set:
|
||||
new_elements.add(element)
|
||||
# Move onto next function
|
||||
continue
|
||||
|
||||
def has_vsp(model: Model, interpretation: Dict[Operation, ModelFunction]) -> bool:
|
||||
"""
|
||||
Tells you whether a model violates the
|
||||
variable sharing property.
|
||||
"""
|
||||
# Iterate over how many new elements would be within the arguments
|
||||
# NOTE: To not repeat work, there must be at least one new element
|
||||
for num_new in range(1, mfun.arity + 1):
|
||||
new_args = combinations_with_replacement(last_new, r=num_new)
|
||||
old_args = combinations_with_replacement(old_closure, r=mfun.arity - num_new)
|
||||
for new_arg, old_arg in product(new_args, old_args):
|
||||
for args in permutations(new_arg + old_arg):
|
||||
cached_args[mfun.arity].append(args)
|
||||
element = mfun(*args)
|
||||
if element not in closure_set:
|
||||
new_elements.add(element)
|
||||
|
||||
impfunction = interpretation[Implication]
|
||||
|
||||
# Compute I the set of tuples (x, y) where
|
||||
# x -> y does not take a designiated value
|
||||
I: Set[Tuple[ModelValue, ModelValue]] = set()
|
||||
|
||||
for (x, y) in product(model.carrier_set, model.carrier_set):
|
||||
if impfunction(x, y) not in model.designated_values:
|
||||
I.add((x, y))
|
||||
|
||||
# Construct the powerset without the empty set
|
||||
s = list(I)
|
||||
I_power = chain.from_iterable(combinations(s, r) for r in range(1, len(s) + 1))
|
||||
# ((x1, y1)), ((x1, y1), (x2, y2)), ...
|
||||
|
||||
for xys in I_power:
|
||||
# Compute the closure of all operations
|
||||
# with just the xs
|
||||
xs = {xy[0] for xy in xys}
|
||||
carrier_set_left: Set[ModelValue] = model_closure(xs, model.logical_operations)
|
||||
|
||||
# Compute the closure of all operations
|
||||
# with just the ys
|
||||
ys = {xy[1] for xy in xys}
|
||||
carrier_set_right: Set[ModelValue] = model_closure(ys, model.logical_operations)
|
||||
|
||||
# If the carrier set intersects, then we violate VSP
|
||||
if len(carrier_set_left & carrier_set_right) > 0:
|
||||
continue
|
||||
|
||||
invalid = False
|
||||
for (x2, y2) in product(carrier_set_left, carrier_set_right):
|
||||
if impfunction(x2, y2) in model.designated_values:
|
||||
invalid = True
|
||||
break
|
||||
|
||||
if not invalid:
|
||||
return True
|
||||
|
||||
return False
|
||||
closure_set.update(new_elements)
|
||||
changed = len(new_elements) > 0
|
||||
last_new = new_elements
|
||||
|
||||
return closure_set
|
||||
|
|
|
@ -13,6 +13,7 @@ from logic import (
|
|||
Negation,
|
||||
Disjunction
|
||||
)
|
||||
from vsp import has_vsp
|
||||
|
||||
def parse_matrices(infile: TextIO) -> List[Tuple[Model, Dict]]:
|
||||
next(infile) # Skip header line
|
||||
|
@ -42,12 +43,11 @@ def parse_matrices(infile: TextIO) -> List[Tuple[Model, Dict]]:
|
|||
if designated_values is None:
|
||||
break
|
||||
|
||||
while True:
|
||||
result = parse_implication(infile, size)
|
||||
if result is None:
|
||||
break
|
||||
mimplication, hasnext = result
|
||||
results = parse_implication(infile, size)
|
||||
if result is None:
|
||||
break
|
||||
|
||||
for mimplication in results:
|
||||
logical_operations = {
|
||||
mnegation, mconjunction, mdisjunction,
|
||||
mimplication
|
||||
|
@ -60,10 +60,7 @@ def parse_matrices(infile: TextIO) -> List[Tuple[Model, Dict]]:
|
|||
Implication: mimplication
|
||||
}
|
||||
solutions.append((model, interpretation))
|
||||
print(f"Parsed {len(solutions)} so far")
|
||||
|
||||
if not hasnext:
|
||||
break
|
||||
return solutions
|
||||
|
||||
def carrier_set_from_size(size: int):
|
||||
|
@ -200,44 +197,45 @@ def parse_designated(infile: TextIO, size: int) -> Optional[Set[ModelValue]]:
|
|||
return designated_values
|
||||
|
||||
|
||||
def parse_implication(infile: TextIO, size: int) -> Optional[Tuple[ModelFunction, bool]]:
|
||||
def parse_implication(infile: TextIO, size: int) -> Optional[List[ModelFunction]]:
|
||||
line = next(infile).strip()
|
||||
if line == '-1':
|
||||
return None
|
||||
|
||||
table = line.split(" ")
|
||||
has_next = True
|
||||
if table[-1] == '-1':
|
||||
has_next = False
|
||||
table = table[:-1]
|
||||
# Split and remove the last '-1' character
|
||||
table = line.split(" ")[:-1]
|
||||
|
||||
assert len(table) == (size + 1)**2
|
||||
|
||||
mapping = {}
|
||||
assert len(table) % (size + 1)**2 == 0
|
||||
|
||||
table_i = 0
|
||||
mimplications: List[ModelFunction] = []
|
||||
|
||||
for i in range(size + 1):
|
||||
x = mvalue_from_index(i)
|
||||
for j in range(size + 1):
|
||||
y = mvalue_from_index(j)
|
||||
for _ in range(len(table) // (size + 1)**2):
|
||||
mapping = {}
|
||||
|
||||
r = parse_mvalue(table[table_i])
|
||||
table_i += 1
|
||||
for i in range(size + 1):
|
||||
x = mvalue_from_index(i)
|
||||
for j in range(size + 1):
|
||||
y = mvalue_from_index(j)
|
||||
|
||||
mapping[(x, y)] = r
|
||||
r = parse_mvalue(table[table_i])
|
||||
table_i += 1
|
||||
|
||||
mimplication = ModelFunction(2, mapping, "Implication")
|
||||
return mimplication, has_next
|
||||
mapping[(x, y)] = r
|
||||
|
||||
mimplication = ModelFunction(2, mapping, "Implication")
|
||||
mimplications.append(mimplication)
|
||||
|
||||
return mimplications
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
from model import has_vsp
|
||||
|
||||
solutions: List[Model] = parse_matrices(sys.stdin)
|
||||
print(f"Parsed {len(solutions)} matrices")
|
||||
for model, interpretation in solutions:
|
||||
for i, (model, interpretation) in enumerate(solutions):
|
||||
# print(model)
|
||||
if has_vsp(model, interpretation):
|
||||
print(model)
|
||||
print("Has VSP")
|
||||
else:
|
||||
print("Model", i, "does not have VSP")
|
||||
|
|
114
vsp.py
Normal file
114
vsp.py
Normal file
|
@ -0,0 +1,114 @@
|
|||
"""
|
||||
Check to see if the model has the variable
|
||||
sharing property.
|
||||
"""
|
||||
from itertools import chain, combinations, product
|
||||
from typing import Dict, Set, Tuple, List
|
||||
from model import (
|
||||
Model, ModelFunction, ModelValue, model_closure
|
||||
)
|
||||
from logic import Implication, Operation
|
||||
|
||||
def preseed(initial_set: Set[ModelValue], cache:List[Tuple[Set[ModelValue], Set[ModelValue]]]):
|
||||
"""
|
||||
Cache contains caches of model closure calls:
|
||||
Ex:
|
||||
{1, 2, 3} -> {....}
|
||||
|
||||
If {1,2,3} is a subset of initial set,
|
||||
then {....} is the subset of the output of model_closure.
|
||||
|
||||
We'll use the output to speed up the saturation procedure
|
||||
"""
|
||||
candidate_preseed: Tuple[Set[ModelValue], int] = (None, None)
|
||||
|
||||
for i, o in cache:
|
||||
if i < initial_set:
|
||||
cost = len(initial_set - i)
|
||||
if candidate_preseed[1] is None or cost < candidate_preseed[1]:
|
||||
candidate_preseed = o, cost
|
||||
|
||||
same_set = candidate_preseed[1] == 0
|
||||
return candidate_preseed[0], same_set
|
||||
|
||||
def has_vsp(model: Model, interpretation: Dict[Operation, ModelFunction]) -> bool:
|
||||
"""
|
||||
Tells you whether a model has the
|
||||
variable sharing property.
|
||||
"""
|
||||
|
||||
impfunction = interpretation[Implication]
|
||||
|
||||
# Compute I the set of tuples (x, y) where
|
||||
# x -> y does not take a designiated value
|
||||
I: Set[Tuple[ModelValue, ModelValue]] = set()
|
||||
|
||||
for (x, y) in product(model.carrier_set, model.carrier_set):
|
||||
if impfunction(x, y) not in model.designated_values:
|
||||
I.add((x, y))
|
||||
|
||||
# Construct the powerset of I without the empty set
|
||||
s = list(I)
|
||||
I_power = chain.from_iterable(combinations(s, r) for r in range(1, len(s) + 1))
|
||||
# ((x1, y1)), ((x1, y1), (x2, y2)), ...
|
||||
|
||||
# Closure cache
|
||||
closure_cache: List[Tuple[Set[ModelValue], Set[ModelValue]]] = []
|
||||
|
||||
# Find the subalgebras which falsify implication
|
||||
for xys in I_power:
|
||||
|
||||
xs = {xy[0] for xy in xys}
|
||||
orig_xs = xs
|
||||
cached_xs = preseed(xs, closure_cache)
|
||||
if cached_xs[0] is not None:
|
||||
xs |= cached_xs[0]
|
||||
|
||||
ys = {xy[1] for xy in xys}
|
||||
orig_ys = ys
|
||||
cached_ys = preseed(ys, closure_cache)
|
||||
if cached_ys[0] is not None:
|
||||
ys |= cached_ys[0]
|
||||
|
||||
|
||||
# NOTE: Optimziation before model_closure
|
||||
# If the carrier set intersects, then move on to the next
|
||||
# subalgebra
|
||||
if len(xs & ys) > 0:
|
||||
continue
|
||||
|
||||
# Compute the closure of all operations
|
||||
# with just the xs
|
||||
carrier_set_left: Set[ModelValue] = model_closure(xs, model.logical_operations)
|
||||
|
||||
# Save to cache
|
||||
if cached_xs[0] is not None and not cached_ys[1]:
|
||||
closure_cache.append((orig_xs, carrier_set_left))
|
||||
|
||||
|
||||
# Compute the closure of all operations
|
||||
# with just the ys
|
||||
carrier_set_right: Set[ModelValue] = model_closure(ys, model.logical_operations)
|
||||
|
||||
# Save to cache
|
||||
if cached_ys[0] is not None and not cached_ys[1]:
|
||||
closure_cache.append((orig_ys, carrier_set_right))
|
||||
|
||||
|
||||
# If the carrier set intersects, then move on to the next
|
||||
# subalgebra
|
||||
if len(carrier_set_left & carrier_set_right) > 0:
|
||||
continue
|
||||
|
||||
# See if for all pairs in the subalgebras, that
|
||||
# implication is falsified
|
||||
falsified = True
|
||||
for (x2, y2) in product(carrier_set_left, carrier_set_right):
|
||||
if impfunction(x2, y2) in model.designated_values:
|
||||
falsified = False
|
||||
break
|
||||
|
||||
if falsified:
|
||||
return True
|
||||
|
||||
return False
|
Loading…
Reference in a new issue