matmod/vsp.py

185 lines
6.1 KiB
Python
Raw Normal View History

"""
Check to see if the model has the variable
sharing property.
"""
from itertools import chain, combinations, product
2024-05-28 14:50:31 -04:00
from typing import Dict, List, Optional, Set, Tuple
2024-05-29 13:50:20 -04:00
from common import set_to_str
from model import (
2024-05-28 14:50:31 -04:00
Model, model_closure, ModelFunction, ModelValue
)
from logic import Conjunction, Disjunction, Implication, Operation
2024-05-28 14:50:31 -04:00
def preseed(
initial_set: Set[ModelValue],
cache:List[Tuple[Set[ModelValue], Set[ModelValue]]]):
"""
2024-05-28 14:50:31 -04:00
Given a cache of previous model_closure calls,
use this to compute an initial model closure
set based on the initial set.
2024-05-28 14:50:31 -04:00
Basic Idea:
Let {1, 2, 3} -> X be in the cache.
If {1,2,3} is a subset of initial set,
2024-05-28 14:50:31 -04:00
then X is the subset of the output of model_closure.
2024-05-28 14:50:31 -04:00
This is used to speed up subsequent calls to model_closure
"""
candidate_preseed: Tuple[Set[ModelValue], int] = (None, None)
for i, o in cache:
if i < initial_set:
cost = len(initial_set - i)
2024-05-28 14:50:31 -04:00
# If i is a subset with less missing elements than
# the previous candidate, then it's the new candidate.
if candidate_preseed[1] is None or cost < candidate_preseed[1]:
candidate_preseed = o, cost
same_set = candidate_preseed[1] == 0
return candidate_preseed[0], same_set
def find_top(algebra: Set[ModelValue], mconjunction: Optional[ModelFunction], mdisjunction: Optional[ModelFunction]) -> Optional[ModelValue]:
"""
Find the top of the order lattice.
T || a = T, T && a = a for all a in the carrier set
"""
if mconjunction is None or mdisjunction is None:
return None
for x in algebra:
for y in algebra:
if mdisjunction(x, y) == x and mconjunction(x, y) == y:
return x
print("[Warning] Failed to find the top of the lattice")
return None
def find_bottom(algebra: Set[ModelValue], mconjunction: Optional[ModelFunction], mdisjunction: Optional[ModelFunction]) -> Optional[ModelValue]:
"""
Find the bottom of the order lattice
F || a = a, F && a = F for all a in the carrier set
"""
if mconjunction is None or mdisjunction is None:
return None
for x in algebra:
for y in algebra:
if mdisjunction(x, y) == y and mconjunction(x, y) == x:
return x
print("[Warning] Failed to find the bottom of the lattice")
return None
2024-05-28 14:50:31 -04:00
class VSP_Result:
def __init__(
2024-05-29 13:50:20 -04:00
self, has_vsp: bool, model_name: Optional[str] = None,
subalgebra1: Optional[Set[ModelValue]] = None,
subalgebra2: Optional[Set[ModelValue]] = None):
2024-05-28 14:50:31 -04:00
self.has_vsp = has_vsp
2024-05-29 13:50:20 -04:00
self.model_name = model_name
2024-05-28 14:50:31 -04:00
self.subalgebra1 = subalgebra1
self.subalgebra2 = subalgebra2
def __str__(self):
2024-05-29 13:50:20 -04:00
if not self.has_vsp:
return f"Model {self.model_name} does not have the variable sharing property."
return f"""Model {self.model_name} has the variable sharing property.
Subalgebra 1: {set_to_str(self.subalgebra1)}
Subalgebra 2: {set_to_str(self.subalgebra2)}
"""
2024-05-28 14:50:31 -04:00
def has_vsp(model: Model, interpretation: Dict[Operation, ModelFunction]) -> VSP_Result:
"""
2024-05-28 14:50:31 -04:00
Checks whether a model has the variable
sharing property.
"""
impfunction = interpretation[Implication]
mconjunction = interpretation.get(Conjunction)
mdisjunction = interpretation.get(Disjunction)
top = find_top(model.carrier_set, mconjunction, mdisjunction)
bottom = find_bottom(model.carrier_set, mconjunction, mdisjunction)
# Compute I the set of tuples (x, y) where
# x -> y does not take a designiated value
I: Set[Tuple[ModelValue, ModelValue]] = set()
for (x, y) in product(model.carrier_set, model.carrier_set):
if impfunction(x, y) not in model.designated_values:
I.add((x, y))
# Construct the powerset of I without the empty set
s = list(I)
I_power = chain.from_iterable(combinations(s, r) for r in range(1, len(s) + 1))
# ((x1, y1)), ((x1, y1), (x2, y2)), ...
# Closure cache
closure_cache: List[Tuple[Set[ModelValue], Set[ModelValue]]] = []
# Find the subalgebras which falsify implication
for xys in I_power:
xs = {xy[0] for xy in xys}
orig_xs = xs
cached_xs = preseed(xs, closure_cache)
if cached_xs[0] is not None:
xs |= cached_xs[0]
ys = {xy[1] for xy in xys}
orig_ys = ys
cached_ys = preseed(ys, closure_cache)
if cached_ys[0] is not None:
ys |= cached_ys[0]
# NOTE: Optimziation before model_closure
# If the two subalgebras intersect, move
# onto the next pair
if len(xs & ys) > 0:
continue
# NOTE: Optimization
# if either subalgebra contains top or bottom, move
# onto the next pair
if top is not None and (top in xs or top in ys):
continue
if bottom is not None and (bottom in xs or bottom in ys):
continue
# Compute the closure of all operations
# with just the xs
carrier_set_left: Set[ModelValue] = model_closure(xs, model.logical_operations)
# Save to cache
if cached_xs[0] is not None and not cached_ys[1]:
closure_cache.append((orig_xs, carrier_set_left))
# Compute the closure of all operations
# with just the ys
carrier_set_right: Set[ModelValue] = model_closure(ys, model.logical_operations)
# Save to cache
if cached_ys[0] is not None and not cached_ys[1]:
closure_cache.append((orig_ys, carrier_set_right))
# If the carrier set intersects, then move on to the next
# subalgebra
if len(carrier_set_left & carrier_set_right) > 0:
continue
# See if for all pairs in the subalgebras, that
# implication is falsified
falsified = True
for (x2, y2) in product(carrier_set_left, carrier_set_right):
if impfunction(x2, y2) in model.designated_values:
falsified = False
break
if falsified:
2024-05-29 13:50:20 -04:00
return VSP_Result(True, model.name, carrier_set_left, carrier_set_right)
2024-05-29 13:50:20 -04:00
return VSP_Result(False, model.name)