;-------------------------------------------------------------------------- ; File : RNG010-5 : TPTP v2.2.0. Released v1.0.0. ; Domain : Ring Theory (Right alternative) ; Problem : Skew symmetry of the auxilliary function ; Version : [Ove90] (equality) axioms : ; Incomplete > Augmented > Incomplete. ; English : The three Moufang identities imply the skew symmetry ; of s(W,X,Y,Z) = (W*X,Y,Z) - X*(W,Y,Z) - (X,Y,Z)*W. ; Recall that skew symmetry means that the function sign ; changes when any two arguments are swapped. This problem ; proves the case for swapping the first two arguments. ; Refs : [Ove90] Overbeek (1990), ATP competition announced at CADE-10 ; : [Ove93] Overbeek (1993), The CADE-11 Competitions: A Personal ; : [LM93] Lusk & McCune (1993), Uniform Strategies: The CADE-11 ; : [Zha93] Zhang (1993), Automated Proofs of Equality Problems in ; Source : [Ove90] ; Names : CADE-11 Competition Eq-9 [Ove90] ; : THEOREM EQ-9 [LM93] ; : PROBLEM 9 [Zha93] ; Status : unknown ; Rating : 1.00 v2.0.0 ; Syntax : Number of clauses : 27 ( 0 non-Horn; 27 unit; 2 RR) ; Number of literals : 27 ( 27 equality) ; Maximal clause size : 1 ( 1 average) ; Number of predicates : 1 ( 0 propositional; 2-2 arity) ; Number of functors : 11 ( 5 constant; 0-4 arity) ; Number of variables : 52 ( 2 singleton) ; Maximal term depth : 6 ( 2 average) ; Comments : I copied this directly. I think the Moufang identities may ; be wrong. At least they're in another form. ; : tptp2X -f kif -t rm_equality:rstfp RNG010-5.p ;-------------------------------------------------------------------------- ; commutative_addition, axiom. (or (= (add ?A ?B) (add ?B ?A))) ; associative_addition, axiom. (or (= (add (add ?A ?B) ?C) (add ?A (add ?B ?C)))) ; right_identity, axiom. (or (= (add ?A additive_identity) ?A)) ; left_identity, axiom. (or (= (add additive_identity ?A) ?A)) ; right_additive_inverse, axiom. (or (= (add ?A (additive_inverse ?A)) additive_identity)) ; left_additive_inverse, axiom. (or (= (add (additive_inverse ?A) ?A) additive_identity)) ; additive_inverse_identity, axiom. (or (= (additive_inverse additive_identity) additive_identity)) ; property_of_inverse_and_add, axiom. (or (= (add ?A (add (additive_inverse ?A) ?B)) ?B)) ; distribute_additive_inverse, axiom. (or (= (additive_inverse (add ?A ?B)) (add (additive_inverse ?A) (additive_inverse ?B)))) ; additive_inverse_additive_inverse, axiom. (or (= (additive_inverse (additive_inverse ?A)) ?A)) ; multiply_additive_id1, axiom. (or (= (multiply ?A additive_identity) additive_identity)) ; multiply_additive_id2, axiom. (or (= (multiply additive_identity ?A) additive_identity)) ; product_of_inverse, axiom. (or (= (multiply (additive_inverse ?A) (additive_inverse ?B)) (multiply ?A ?B))) ; multiply_additive_inverse1, axiom. (or (= (multiply ?A (additive_inverse ?B)) (additive_inverse (multiply ?A ?B)))) ; multiply_additive_inverse2, axiom. (or (= (multiply (additive_inverse ?A) ?B) (additive_inverse (multiply ?A ?B)))) ; distribute1, axiom. (or (= (multiply ?A (add ?B ?C)) (add (multiply ?A ?B) (multiply ?A ?C)))) ; distribute2, axiom. (or (= (multiply (add ?A ?B) ?C) (add (multiply ?A ?C) (multiply ?B ?C)))) ; right_alternative, axiom. (or (= (multiply (multiply ?A ?B) ?B) (multiply ?A (multiply ?B ?B)))) ; associator, axiom. (or (= (associator ?A ?B ?C) (add (multiply (multiply ?A ?B) ?C) (additive_inverse (multiply ?A (multiply ?B ?C)))))) ; commutator, axiom. (or (= (commutator ?A ?B) (add (multiply ?B ?A) (additive_inverse (multiply ?A ?B))))) ; middle_associator, axiom. (or (= (multiply (multiply (associator ?A ?A ?B) ?A) (associator ?A ?A ?B)) additive_identity)) ; left_alternative, axiom. (or (= (multiply (multiply ?A ?A) ?B) (multiply ?A (multiply ?A ?B)))) ; defines_s, axiom. (or (= (s ?A ?B ?C ?D) (add (add (associator (multiply ?A ?B) ?C ?D) (additive_inverse (multiply ?B (associator ?A ?C ?D)))) (additive_inverse (multiply (associator ?B ?C ?D) ?A))))) ; right_moufang, hypothesis. (or (= (multiply ?A (multiply ?B (multiply ?C ?B))) (multiply (commutator (multiply ?A ?B) ?C) ?B))) ; left_moufang, hypothesis. (or (= (multiply (multiply ?A (multiply ?B ?A)) ?C) (multiply ?A (commutator ?B (multiply ?A ?C))))) ; middle_moufang, hypothesis. (or (= (multiply (multiply ?A ?B) (multiply ?C ?A)) (multiply (multiply ?A (multiply ?B ?C)) ?A))) ; prove_skew_symmetry, conjecture. (or (/= (s a b c d) (additive_inverse (s b a c d)))) ;--------------------------------------------------------------------------