;-------------------------------------------------------------------------- ; File : LCL109-2 : TPTP v2.2.0. Released v1.0.0. ; Domain : Logic Calculi (Many valued sentential) ; Problem : MV-4 depends on the Merideth system ; Version : [Ove90] axioms. ; Theorem formulation : Wajsberg algebra formulation. ; English : An axiomatisation of the many valued sentential calculus ; is {MV-1,MV-2,MV-3,MV-5} by Meredith. Wajsberg provided ; a different axiomatisation. Show that MV-4 depends on the ; Wajsberg system. ; Refs : [Ove90] Overbeek (1990), ATP competition announced at CADE-10 ; : [LM92] Lusk & McCune (1992), Experiments with ROO, a Parallel ; : [LW92] Lusk & Wos (1992), Benchmark Problems in Which Equalit ; : [Ove93] Overbeek (1993), The CADE-11 Competitions: A Personal ; : [LM93] Lusk & McCune (1993), Uniform Strategies: The CADE-11 ; : [Zha93] Zhang (1993), Automated Proofs of Equality Problems in ; Source : [Ove90] ; Names : CADE-11 Competition Eq-5 [Ove90] ; : Luka-5 [LM92] ; : MV4 [LW92] ; : THEOREM EQ-5 [LM93] ; : PROBLEM 5 [Zha93] ; Status : unsatisfiable ; Rating : 0.56 v2.2.0, 0.71 v2.1.0, 1.00 v2.0.0 ; Syntax : Number of clauses : 5 ( 0 non-Horn; 5 unit; 1 RR) ; Number of literals : 5 ( 5 equality) ; Maximal clause size : 1 ( 1 average) ; Number of predicates : 1 ( 0 propositional; 2-2 arity) ; Number of functors : 5 ( 3 constant; 0-2 arity) ; Number of variables : 8 ( 0 singleton) ; Maximal term depth : 4 ( 2 average) ; Comments : ; : tptp2X -f kif -t rm_equality:rstfp LCL109-2.p ; ; 'true' renamed to 'true0' - MES ;-------------------------------------------------------------------------- ; wajsberg_1, axiom. (or (= (implies true0 ?A) ?A)) ; wajsberg_2, axiom. (or (= (implies (implies ?A ?B) (implies (implies ?B ?C) (implies ?A ?C))) true0)) ; wajsberg_3, axiom. (or (= (implies (implies ?A ?B) ?B) (implies (implies ?B ?A) ?A))) ; wajsberg_4, axiom. (or (= (implies (implies (not ?A) (not ?B)) (implies ?B ?A)) true0)) ; prove_wajsberg_mv_4, conjecture. (or (/= (implies (implies (implies a b) (implies b a)) (implies b a)) true0)) ;--------------------------------------------------------------------------