;-------------------------------------------------------------------------- ; File : RNG009-5 : TPTP v2.2.0. Released v1.0.0. ; Domain : Ring Theory ; Problem : If X*X*X = X then the ring is commutative ; Version : [Peterson & Stickel,1981] (equality) axioms : ; Reduced > Incomplete. ; English : Given a ring in which for all x, x * x * x = x, prove that ; for all x and y, x * y = y * x. ; Refs : [PS81] Peterson & Stickel (1981), Complete Sets of Reductions ; : [Ove90] Overbeek (1990), ATP competition announced at CADE-10 ; : [Ove93] Overbeek (1993), The CADE-11 Competitions: A Personal ; : [LM93] Lusk & McCune (1993), Uniform Strategies: The CADE-11 ; : [Zha93] Zhang (1993), Automated Proofs of Equality Problems in ; Source : [Ove90] ; Names : CADE-11 Competition Eq-7 [Ove90] ; : THEOREM EQ-7 [LM93] ; : PROBLEM 7 [Zha93] ; Status : unsatisfiable ; Rating : 0.67 v2.2.0, 0.71 v2.1.0, 1.00 v2.0.0 ; Syntax : Number of clauses : 9 ( 0 non-Horn; 9 unit; 1 RR) ; Number of literals : 9 ( 9 equality) ; Maximal clause size : 1 ( 1 average) ; Number of predicates : 1 ( 0 propositional; 2-2 arity) ; Number of functors : 6 ( 3 constant; 0-2 arity) ; Number of variables : 17 ( 0 singleton) ; Maximal term depth : 3 ( 2 average) ; Comments : ; : tptp2X -f kif -t rm_equality:rstfp RNG009-5.p ;-------------------------------------------------------------------------- ; right_identity, axiom. (or (= (add ?A additive_identity) ?A)) ; right_additive_inverse, axiom. (or (= (add ?A (additive_inverse ?A)) additive_identity)) ; distribute1, axiom. (or (= (multiply ?A (add ?B ?C)) (add (multiply ?A ?B) (multiply ?A ?C)))) ; distribute2, axiom. (or (= (multiply (add ?A ?B) ?C) (add (multiply ?A ?C) (multiply ?B ?C)))) ; associative_addition, axiom. (or (= (add (add ?A ?B) ?C) (add ?A (add ?B ?C)))) ; commutative_addition, axiom. (or (= (add ?A ?B) (add ?B ?A))) ; associative_multiplication, axiom. (or (= (multiply (multiply ?A ?B) ?C) (multiply ?A (multiply ?B ?C)))) ; x_cubed_is_x, hypothesis. (or (= (multiply ?A (multiply ?A ?A)) ?A)) ; prove_commutativity, conjecture. (or (/= (multiply a b) (multiply b a))) ;--------------------------------------------------------------------------